Аксиома

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Логотип Викисловаря
В Викисловаре есть статья «аксиома»

Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений.[1]

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.[2]

В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.[3]

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами. С формальной точки зрения, сами аксиомы также входят в число теорем.

Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.

Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).[4]

Примеры аксиом

История[править | править исходный текст]

Впервые термин «аксиома» встречается у Аристотеля (384322 до н. э.) и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора её аксиом.[1]

См. также[править | править исходный текст]

Wikiquote-logo.svg
В Викицитатнике есть страница по теме
Аксиома

Литература[править | править исходный текст]

  • Начала Евклида. Книги I—VI. М.-Л., 1950
  • Гильберт Д. Основания геометрии. М.-Л., 1948

Ссылки[править | править исходный текст]

Примечания[править | править исходный текст]

  1. 1 2 Энциклопедический словарь. — М.: Гардарики. Под редакцией А. А. Ивина. 2004.
  2. Клайн Морис, «Математика. Утрата определённости.» — М.: Мир, 1984.
  3. Философский энциклопедический словарь. — М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983.
  4. Статья «Теорема Гёделя о неполноте» на сайте «Элементы»