Механическая работа

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Работа
A = \bold{F} \cdot \bold{S}
Размерность

L2MT−2

Единицы измерения
СИ

Дж

СГС

эрг

Примечания

скалярная величина

 Просмотр этого шаблона  Механическая работа
W = \bold{F} \cdot \bold{S} = F \cdot  S \cdot  \cos\varphi
Работа силы
Ключевые статьи
Известные учёные
Джоуль
См. также: Портал:Физика

Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек), тела или системы[1].

Определение[править | править вики-текст]

В механике можно ввести понятие работы, исходя из довольно простых представлений[2].

Работа силы (сил) над одной точкой[править | править вики-текст]

  • Работа нескольких сил определяется естественным образом как работа их равнодействующей (их векторной суммы). Поэтому дальше будем говорить об одной силе.
Mehaaniline töö.png

При прямолинейном движении одной материальной точки и постоянном значении приложенной к ней силы работа (этой силы) равна произведению величины проекции вектора силы на направление движения и величины совершённого перемещения[3]:

A = F_s s = F s\ \mathrm{cos}(F,s) = \vec F\cdot\vec s

Здесь точкой обозначено скалярное произведение[4], \vec s — вектор перемещения; подразумевается, что действующая сила \vec F постоянна в течение всего того времени, за которое вычисляется работа.

В общем случае, когда сила не постоянна, а движение не прямолинейно, работа вычисляется как криволинейный интеграл второго рода по траектории точки[5]:

A = \int \vec F\cdot\vec {ds}.

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений \vec {ds}, если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат[6], интеграл определяется[7] следующим образом:

A = \int\limits_{\vec r_0}^{\vec r_1}\vec F\left(\vec r\right)\cdot\vec{dr},

где \vec r_0 и \vec r_1 — радиус-векторы начального и конечного положения тела соответственно.

  • Следствие: если направление движения тела ортогонально силе, работа (этой силы) равна нулю.

Работа силы (сил) над системой или неточечным телом[править | править вики-текст]

Работа сил над системой материальных точек определяется как сумма работ этих сил над каждой точкой (работы, совершённые над каждой точкой системы, суммируются в суммарную работу этих сил над системой).

Даже если изначально тело не является системой дискретных точек, можно разбить его (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых считать материальной точкой, вычисляя работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для конкретной силы или класса сил — для вычисления именно их работы отдельно, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия[править | править вики-текст]

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

Схема рассуждений такова: 1) попробуем записать работу, совершаемую всеми силами, действующими на материальную точку и, пользуясь вторым законом Ньютона (позволяющим выразить силу через ускорение), попытаться выразить ответ только через кинематические величины, 2) убедившись, что это удалось, и что этот ответ зависит только от начального и конечного состояния движения, введём новую физическую величину, через которую эта работа будет просто выражаться (это и будет кинетическая энергия).

Если A_{total} — полная работа, совершённая над частицей, определяемая как сумма работ совершенных приложенными к частице силами, то она выражается как:

A_{total}=\Delta\left(\frac{mv^2}{2}\right)=\Delta E_k,

где E_k называется кинетической энергией. Для материальной точки, кинетическая энергия определяется как работа силы, ускорившей точку от нулевой скорости до величины скорости v и выражается как:

E_k = \frac{1}{2}mv^2

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия[править | править вики-текст]

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая E_p, такая что

 \vec{F} = - \nabla E_p.

Если все силы, действующие на частицу консервативны, и E_p является полной потенциальной энергией, полученной суммированием потенциальных энергий соответствующих каждой силе, тогда:

\vec{F} \cdot \Delta \vec{s} = - \vec{\nabla} E_p \cdot \Delta \vec{s} = - \Delta E_p
 \Rightarrow - \Delta E_p = \Delta E_k \Rightarrow \Delta (E_k + E_p) = 0 \,\!.

Этот результат известен как закон сохранения механической энергии и утверждает, что полная механическая энергия в замкнутой системе, в которой действуют консервативные силы,

\sum E = E_k + E_p \,\!

является постоянной во времени. Этот закон широко используется при решении задач классической механики.

Работа в термодинамике[править | править вики-текст]

В термодинамике работа, совершенная газом при расширении[8], рассчитывается как интеграл давления по объёму:

A_{1 \rightarrow 2} = \int\limits_{V_1}^{V_2} P dV.

Работа, совершенная над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объема, но и к любому процессу (изображаемому любой кривой в плоскости PV), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

dA = P dS h.

Видно, что это и есть произведение давления на приращение объема вблизи данной элементарной площадкой. А просуммировав по всем dS получим конечный результат, где будет уже полное приращение объема, как и в главной формуле параграфа.

Работа силы в теоретической механике[править | править вики-текст]

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M движется по непрерывно дифференцируемой кривой G = \{r=r(s)\}, где s — переменная длина дуги,0\le s\le S и на неё действует сила F(s), направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F(s) проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F(\xi _i)\triangle s_i, \triangle s_i = s_i - s_{i-1}, i=1,2,...,i_{\tau}, называется элементарной работой силы F на участке G_i и принимается за приближенное значение работы, которую производит сила F, воздействующая на материальную точку, когда последняя проходит кривую G_i. Сумма всех элементарных работ \sum_{i=1} ^{i_{\tau}}F(\xi_i)\triangle s_i является интегральной суммой Римана функции F(s).

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма \sum_{i=1} ^{i_{\tau}}F(\xi_i)\triangle s_i всех элементарных работ, когда мелкость |\tau | разбиения \tau стремится к нулю, называется работой силы F вдоль кривой G.

Таким образом, если обозначить эту работу буквой W, то, в силу данного определения,

W=\lim_{|\tau |\rightarrow 0} \sum_{i=1} ^{i_{\tau}}F(\xi_i)\triangle s_i,

следовательно,

W=\int \limits_0 ^s F(s)ds (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t (например, времени) и если величина пройденного пути s=s(t), a\leq t \leq b является непрерывно дифференцируемой функцией, то из формулы (1) получим

W=\int\limits_a ^b F[s(t)]s'(t)dt.

Размерность и единицы[править | править вики-текст]

Единицей измерения работы в Международной системе единиц (СИ) является джоуль, в СГС — эрг

1 Дж = 1 кг·м²/с² = 1 Н·м
1 эрг = 1 г·см²/с² = 1 дин·см
1 эрг = 10−7 Дж

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Тарг С. М. Работа силы // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 193-194. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Такие представления можно конкретизировать как систему постулатов, приводящую достаточно однозначно к определению, описанному в основной статье[источник не указан 64 дня]:
    1. работу совершает только компонента силы, совпадающая с направлением перемещения точки, к которой она приложена, или противоположная направлению перемещения точки (в последнем случае работа считается отрицательной),
    2. работа постоянной силы пропорциональна компоненте такой силы, описанной в пункте 1, и длине вектора перемещения,
    3. работа по перемещению точки за несколько последовательных промежутков времени суммируется (работа за всё это время равна сумме работ, совершенных за каждый промежуток),
    4. работа суммы (векторной суммы) сил, приложенных к точке равна сумме работ, совершенных каждой силой в отдельности,
    5. работа, совершенная над системой (телом) равна сумме работ, совершенных над каждой ее частью (в частности — равна сумме работ, совершенных над каждой точкой системы).
  3. Механическая работа. Мощность
  4. Можно считать, что механическая работа может служить в области физики одной из главных иллюстраций для скалярного произведения.
  5. Это делается исходя из того, что можно разбить суммарное конечное перемещение на маленькие последовательные перемещения \vec{ds}, на каждом из которых сила будет почти постоянной, а значит можно будет воспользоваться определением для постоянной силы, введенным выше. Затем работы на всех этих перемещениях \vec{ds} суммируется, что и дает в результате интеграл.
  6. Как это очень часто бывает. Например, в случае кулоновского поля, растягивающейся пружины, силы тяготения планеты итд итд.
  7. По сути через предыдущий, поскольку здесь \vec F(t) = \vec F(\vec r(t)); вектор же малого перемещения \vec{ds} совпадает с d\vec{r}.
  8. Работа, совершаемая газом при его сжатии, очевидно отрицательна, но вычисляется по той же формуле. Работа, совершаемая газом (или над газом) без его расширения или сжатия (например, в процессе перемешивания мешалкой), в принципе может быть выражена подобной формулой, но всё же не прямо этой, так как она требует обобщения: дело в том, что в формуле \int P dV давление подразумевается одинаковым по всему объему (что часто выполняется в термодинамике, поскольку речь там часто идет о процессах, близких к равновесным), что и приводит к наиболее простой формуле (в случае же вращающейся мешалки, например, давление будет разным на передней и задней стороне лопасти, что приведет к необходимому усложнению формулы, если мы захотим применить ее к такому случаю; эти соображения относятся и ко всем другим неравновесным случаям, когда давление неодинаково в разных частях системы).

Литература[править | править вики-текст]

  • История механики с древнейших времен до конца XVIII в. В 2 т. М.: Наука, 1972.
  • Кирпичёв В. Л. Беседы о механике. М.-Л.: Гостехиздат, 1950.
  • Льоцци М. История физики. М.: Мир, 1970.
  • Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
  • Мах Э. Механика. Историко-критический очерк ее развития. Ижевск: РХД, 2000.
  • Тюлина И. А. История и методология механики. М.: Изд. МГУ, 1979.