Платина

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
78 ИридийПлатинаЗолото
Pd

Pt

Ds
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Унунтрий Флеровий Унунпентий Ливерморий Унунсептий УнуноктийПериодическая система элементов
78Pt
Cubic-face-centered.svg
Electron shell 078 Platinum.svg
Внешний вид простого вещества
Кристаллы платины
Тяжёлый, мягкий серебристо-белый металл
Свойства атома
Название, символ, номер

Платина / Platinum (Pt), 78

Атомная масса
(молярная масса)

195,084(9)[1] а. е. м. (г/моль)

Электронная конфигурация

[Xe] 4f14 5d9 6s1

Радиус атома

139 пм

Химические свойства
Ковалентный радиус

130 пм

Радиус иона

(+4e) 65 (+2e) 80 пм

Электроотрицательность

2,28 (шкала Полинга)

Электродный потенциал

Pt←Pt2+ 1,20 В

Степени окисления

4, 2, 0

Энергия ионизации
(первый электрон)

 868,1 (9,00) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

21,09-21,45[2][3] г/см³

Температура плавления

2041,4 K (1768,3 °C, 3214,9 °F)[2]

Температура кипения

4098 K (3825 °C, 6917 °F)[2]

Уд. теплота плавления

21,76 кДж/моль

Уд. теплота испарения

~470 кДж/моль

Молярная теплоёмкость

25,85[3] Дж/(K·моль)

Молярный объём

9,10 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая
гранецентрированная

Параметры решётки

3,920 Å

Температура Дебая

230,00 K

Прочие характеристики
Теплопроводность

(300 K) 71,6 Вт/(м·К)

Тепловое расширение

(25 °C) 8,8

Модуль Юнга

168 ГПа

Модуль сдвига

61 ГПа

Модуль объёмной упр.

230 ГПа

Коэффициент Пуассона

0,38

Твёрдость Мооса

3,5

Твёрдость Виккерса

549 МПа

Твёрдость Бринелля

392 МПа

Номер CAS

7440-06-4

78
Платина
Pt
195,08
4f145d96s1

Пла́тина (исп. Platina) — химический элемент 10 группы (по устаревшей классификации — побочной подгруппы восьмой группы), 6 периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 78; блестящий благородный металл серебристо-белого цвета.

История[править | править вики-текст]

В Старом Свете платина не была известна до XVIII века, однако цивилизации Анд (инки и чибча) добывали и использовали её с незапамятных времён. Первыми европейцами, познакомившимися с платиной, были конкистадоры в середине XVI века. Считается, что первым в литературе упомянул о платине Скалигер в опубликованной в 1557 году книге «Экзотерические упражнения в 15 книгах», где он, полемизируя с Кардано о понятии «металл», рассказал о некоем веществе из Гондураса, которое нельзя расплавить, вероятно, этим веществом и была платина[4][5].

В 1735 году испанский король издаёт указ, повелевающий платину впредь в Испанию не ввозить. При разработке россыпей в Колумбии повелевалось тщательно отделять её от золота и топить под надзором королевских чиновников в глубоких местах речки Рио-дель-Пинто (приток Рио-Сан-Хуан (англ.)русск.), которую стали именовать Платино-дель-Пинто. А ту платину, которая уже привезена в Испанию, повелевалось всенародно и торжественно утопить в море. Дело в том, что платина легко сплавляется с золотом и по плотности от него почти не отличается, чем не преминули воспользоваться фальшивомонетчики.[источник не указан 209 дней] Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. В 1820 году в Европу было доставлено от 3 до 7 тонн платины. Здесь с нею познакомились алхимики, считавшие самым тяжелым металлом золото. Необычайно плотная платина оказалась тяжелее золота, поэтому алхимики посчитали ее непригодным металлом и наделили адскими чертами. Некоторое применение платина нашла позже во Франции, когда из нее был изготовлен эталон метра, а позже эталон килограмма[6].

Согласно некоторым источникам, испанский математик и мореплаватель А. де Ульоа в 1744 году привёз образцы платины в Лондон[7]:210, он поместил описание платины в своём отчёте о путешествии в Южную Америку, опубликованном в 1748 году[8]. В 1789 А. Лавуазье включил платину в список простых веществ[9][7]:210. Впервые в чистом виде из руд платина была получена английским химиком У. Волластоном в 1803 году.

В России ещё в 1819 году в россыпном золоте, добытом на Урале, был обнаружен «новый сибирский металл», который сначала называли белым золотом. Платина встречалась на Верх-Исетских, а затем и на Невьянских и Билимбаевских приисках. Богатые россыпи платины были открыты во второй половине 1824 года, а на следующий год в России началась её добыча[10]. В 1826 году П. Г. Соболевский и В. В. Любарский изобрели метод выработки ковкой платины с помощью прессования и последующей выдержки в раскалённом добела состоянии[7]:210[11].

Происхождение названия[править | править вики-текст]

Название платине было дано испанскими конкистадорами, которые в середине XVI в. впервые познакомились в Южной Америке (на территории современной Колумбии) с новым металлом, внешне похожим на серебро (исп. plata). Слово буквально означает «маленькое серебро», «серебришко». Объясняется такое пренебрежительное название исключительной тугоплавкостью платины, которая не поддавалась переплавке, долгое время не находила применения и ценилась вдвое ниже, чем серебро.

Нахождение в природе[править | править вики-текст]

Изотопы[править | править вики-текст]

Природная платина встречается в виде смеси из четырёх стабильных изотопов: 194Pt (32,9 %), 195Pt (33,8 %), 196Pt (25,2 %), 197Pt (7,2 %) и двух радиоактивных: 190Pt (0,013 %, период полураспада 6,9·1011 лет), 192Pt (0,78 %,10·1015 лет).

Месторождения[править | править вики-текст]

Самородок платины, месторождение Кондёр

Содержание платины в земной коре составляет 5·10-7 % по массе[3]. Даже так называемая самородная платина является сплавом, содержащим от 75 до 92 процентов платины, до 20 процентов железа, а также иридий, палладий, родий, осмий, реже медь и никель[7]:207.

Основная часть месторождений платины (более 90 %) заключена в недрах пяти стран. К этим странам относятся ЮАР, США, Россия, Зимбабве, Китай.

В России основными месторождениями металлов платиновой группы являются: Октябрьское, Талнахское и Норильск-1 сульфидно-медно-никелевые в Красноярском крае в районе Норильска (более 99 % разведанных и более 94 % оцененных российских запасов), Фёдорова Тундра (участок Большой Ихтегипахк) сульфидно-медно-никелевое в Мурманской области, а также россыпные Кондёр в Хабаровском крае, Левтыринываям в Камчатском крае, реки Лобва и Выйско-Исовское в Свердловской области[12]. Крупнейшим платиновым самородком, найденным в России, является «Уральский гигант» массой 7860,5 г, обнаруженный в 1904 г. на Исовском прииске; в настоящее время хранится в Алмазном фонде.

Получение[править | править вики-текст]

Самородную платину добывают на приисках (см. подробнее в статье Благородные металлы), менее богаты рассыпные месторождения платины, которые разведываются, в основном, способом шлихового опробования.

Производство платины в виде порошка началось в 1805 году английским ученым У. Х. Волластоном из южноамериканской руды. Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir3+ и Pd2+. Последующим добавлением хлорида аммония выделяют (NH4)2PtCl6. Высушенный осадок прокаливают при 800—1000 °C:

\mathsf{3(NH_4)_2[PtCl_6] \xrightarrow{T}\ 2N_2\uparrow + 2NH_3 \uparrow + 18HCl + 3Pt}

Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении растворов солей платины химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.

Физические свойства[править | править вики-текст]

Серовато-белый пластичный металл, температуры плавления и кипения — 2041,4 K (1768,3 °C) и 4098 K (3825 °C)[2] соответственно, удельное электрическое сопротивление — 0,098 мкОм·м (при 0 °С). Платина — один из самых тяжелых (плотность 21,09-21,45 г/см³[3][2]; атомная плотность 6,62·1022 ат/см³) и самых редких металлов: среднее содержание в земной коре (кларк) 5·10−7% по массе. Твёрдость по Бринеллю — 50 кгс/мм2 (по Моосу 3,5[13]).

Кристаллическая решётка кубическая гранецентрированная, а = 0,392 нм, z = 4, пространственная группа Fт3т[3].

Химические свойства[править | править вики-текст]

Растворение платины в горячей царской водке.

По химическим свойствам платина похожа на палладий, но проявляет бо́льшую химическую устойчивость. Реагирует только с горячей царской водкой:

\mathsf{3Pt + 4HNO_3 + 18HCl \rightarrow 3H_2[PtCl_6] + 4NO \uparrow + 8H_2O}

Платина медленно растворяется в горячей концентрированной серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов):

\mathsf{Pt + 2Cl_2 + 2NaCl \rightarrow Na_2[PtCl_6]}

При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объём поглощаемого водорода меньше и способность его отдавать при нагревании у платины меньше.

При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: чёрный PtO, коричневый PtO2, красновато-коричневый PtO3, а также Pt2O3 и Pt3O4.

Для платины известны гидроксиды Pt(OH)2 и Pt(OH)4. Получают их при щелочном гидролизе соответствующих хлорплатинатов, например:

\mathsf{Na_2[PtCl_4] + 2NaOH \rightarrow 4NaCl + Pt(OH)_2\downarrow}
\mathsf{Na_2[PtCl_6] + 4NaOH \rightarrow 6NaCl + Pt(OH)_4\downarrow}

Эти гидроксиды проявляют амфотерные свойства:

\mathsf{Pt(OH)_2 + 2NaOH \rightarrow Na_2[Pt(OH)_4]}
\mathsf{Pt(OH)_2 + 4HBr \rightarrow H_2[PtBr_4] + 2H_2O}
\mathsf{Pt(OH)_4 + 2NaOH \rightarrow Na_2[Pt(OH)_6]}
\mathsf{Pt(OH)_4 + 6HBr \rightarrow H_2[PtBr_6] + 4H_2O}

Гексафторид платины PtF6 является одним из сильнейших окислителей среди всех известных химических соединений, способный окислить молекулы кислорода и ксенона:

\mathsf{O_2 + PtF_6 \rightarrow O_2^+[PtF_6]^-}

Соединение O2+[PtF6]2- летуче и разлагается водой на фтороплатинат(IV), небольшое количество гидратированного диоксида платины и кислород с примесью озона[14].

С помощью гексафторида платины, в частности, канадский химик Нейл Бартлетт в 1962 году получил первое настоящее химическое соединение ксенона XePtF6.

C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF6, приводящего к образованию XePtF6, началась химия инертных газов. PtF6 получают фторированием платины при 1000 °C под давлением.

Фторирование платины при нормальным давлении и температуре 350—400 °C даёт фторид Pt(IV):

\mathsf{Pt + 2F_2 \rightarrow PtF_4}

Фториды платины гигроскопичны и разлагаются водой.

Тетрахлорид платины (IV) с водой образует гидраты PtCl4·nH2O, где n = 1, 4, 5 и 7. Растворением PtCl4 в соляной кислоте получают платинохлористоводородные кислоты H[PtCl5] и H2[PtCl6]. Синтезированы такие галогениды платины как PtBr4, PtCl2, PtCl2·2PtCl3, PtBr2 и PtI2.

Для платины характерно образование комплексных соединений состава [PtX4]2- и [PtX6]2-. Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.

Реакционная способность[править | править вики-текст]

Монета 3 рубля, 1834

Платина является одним из самых инертных металлов. Она нерастворима в кислотах и щелочах, за исключением царской водки. Платина также непосредственно реагирует с бромом, растворяясь в нём.

При нагревании платина становится более реакционноспособной. Она реагирует с пероксидами, а при контакте с кислородом воздуха — с щелочами. Тонкая платиновая проволока горит во фторе с выделением большого количества тепла. Реакции с другими неметаллами (хлором, серой, фосфором) происходят менее активно. При более сильном нагревании платина реагирует с углеродом и кремнием, образуя твёрдые растворы, аналогично металлам группы железа.

В своих соединениях платина проявляет почти все степени окисления от 0 до +6, из которых наиболее устойчивы +2 и +4. Для платины характерно образование многочисленных комплексных соединений, которых известно много сотен. Многие из них носят имена изучавших их химиков (соли Косса, Магнуса, Пейроне, Цейзе, Чугаева и т. д.). Большой вклад в изучение таких соединений внес русский химик Л. А. Чугаев (18731922), первый директор созданного в 1918 году Института по изучению платины.

Катализатор[править | править вики-текст]

Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» — прибор, широко применявшийся для получения огня до изобретения спичек.

Добыча и производство[править | править вики-текст]

До 1748 г. платина добывалась и производилась только на территории Америки, а в Старом Свете не была известна.

Когда платину стали завозить в Европу, её цена была вдвое ниже серебра. Ювелиры очень быстро обнаружили, что платина хорошо сплавляется с золотом, а так как плотность платины выше чем у золота, то незначительные добавки платины позволили изготавливать подделки, которые невозможно было отличить от золотых изделий. Такого рода подделки получили столь широкое распространение, что испанский король приказал прекратить ввоз платины, а оставшиеся запасы утопить в море. Этот закон просуществовал до 1778 года. После отмены закона потребность в платине была небольшой, её использовали в основном для создания химического оборудования, приспособлений и в качестве катализаторов. Добываемой в Америке платины для этих целей было достаточно. Ни о каком значимом промышленном производстве говорить не приходилось.

В 1819 году платину впервые обнаружили на Урале близ Екатеринбурга, а в 1824 г. были открыты платиновые россыпи в Нижнетагильском округе. Разведанные запасы платины были столь велики, что Россия почти сразу заняла первое место в мире по добыче этого металла. Только в 1828 году в России было добыто 1,5 т платины — больше, чем за 100 лет в Южной Америке. На Урале появились целые платинодобывающие районы, из которых наиболее важными в промышленном отношении стали Исовской и Тагильский[15].

К концу XIX века в Российской империи добывалось платины в 40 раз больше чем во всех остальных странах мира. Причём представлена она была и весьма увесистыми самородками. Например, у одного из найденных на Урале самородков масса составляла 9,639 кг, впоследствии он был переплавлен[16].

К середине XIX в. в Англии и Франции были проведены обширные исследования по аффинажу платины. В 1859 году французский химик Анри Этьен Сент-Клер Девиль впервые разработал промышленный способ получения слитков чистой платины. С этого времени почти вся добываемая на Урале платина скупалась английскими и французскими фирмами, в частности, «Джонсон, Маттей и К°». Позже к закупкам платины у Российской империи подключились американские и немецкие компании.

Даже после значительных зарубежных закупок, большая часть добываемой Россией платины не находила достойного применения. Поэтому, начиная с 1828 года, по предложению министра финансов Егора Канкрина, в Российской империи начали выпускать платиновые монеты номиналом 3, 6 и 12 рублей[17]. При этом, 12-рублёвая платиновая монета имела массу 41,41 г, а в рублёвой серебряной монете было 18 г чистого серебра. То есть по стоимости металла платиновые монеты были дороже серебряных в 5,2 раза. С 1828 по 1845 гг. было выпущено 1 372 000 трёхрублёвых монет, 17 582 шестирублёвых и 3 303 двенадцатирублёвых общей массой 14,7 т. Основную выгоду от добычи получали владельцы рудников — Демидовы. Только в 1840 было добыто 3,4 т платины. В 1845 году, по настоянию нового министра финансов Фёдора Вронченко выпуск платиновых монет был прекращён, и все они были срочно изъяты из обращения. Основной версией столь поспешного шага считается повышение европейских цен на платину, в результате которого монеты стали стоить дороже номинала. После прекращения чеканки монет добыча платины в Российской империи упало в 20 раз. Все же к 1915 году на долю России приходилось 95 % от мировой добычи платины. Оставшиеся 5 % добычи Колумбия. Причём почти вся российская платина поступала на экспорт. Например, в 1867 году Англия скупила весь запас российской платины — более 16 т.

К концу XIX в. Российская империя добывала 4,5 тонны платины в год.

До Первой мировой войны второй после Российской империи страной по объёмам добычи платины была Колумбия; с 1930-х гг. стала Канада, а после Второй мировой войны — Южная Африка.

В 1952 году Колумбия добыла 0,75 т платины, США — 0,88 т, в Канада — 3,75 т, а Южно-Африканский Союз — 7,2 т. В СССР данные по добыче платины были засекречены.

В 2007 году в мире было добыто 213 т платины, а в 2008 году — 200 т. Лидерами добычи были:

  • ЮАРFlag of South Africa.svg ЮАР (в 2007 году добыто 166,0 т, а в 2008 году — 153,0 т),
  • РоссияFlag of Russia.svg Россия (в 2007 году — 27,0 т. , в 2008 году — 25,0 т),
  • КанадаFlag of Canada.svg Канада (в 2007 году — 6,2 т. , в 2008 году — 7,2 т),
  • ЗимбабвеFlag of Zimbabwe.svg Зимбабве (в 2007 году — 5,3 т. , в 2008 году — 5,6 т),
  • СШАFlag of the United States.svg США (в 2007 году — 3,9 т. , в 2008 году — 3,7 т),
  • КолумбияFlag of Colombia.svg Колумбия (в 2007 году — 1,4 т. , в 2008 году — 1,7 т)[18].

Лидером добычи платины в России является ГМК «Норильский никель».

Кроме того, на территории Хабаровского края располагается прииск Кондёр, который является крупнейшим в мире россыпным месторождением платины[19]; его разработку ведёт Артель старателей «Амур» (входит в Группу компаний «Русская платина»), по итогам 2011 года на прииске добыто около 3,7 тонны платины[20].

Разведанные мировые запасы металлов платиновой группы составляют около 80 000 т и распределены, в основном, между ЮАР (87,5 %), Россией (8,3 %) и США (2,5 %).

Применение[править | править вики-текст]

В технике[править | править вики-текст]

В медицине[править | править вики-текст]

Соединения платины (преимущественно, аминорплатинаты) применяются как цитостатики при терапии различных форм рака. Первым в клиническую практику был введен цисплатин (цис-дихлородиамминплатина(II)), однако в настоящее время применяются более эффективные карбоксилатные комплексы диамминплатины — карбоплатин и оксалиплатин.

В ювелирном деле[править | править вики-текст]

Платина и её сплавы широко используются для производства ювелирных изделий.

Ежегодно мировая ювелирная промышленность потребляет около 50 тонн платины. До 2001 года большая часть ювелирных изделий из платины потреблялась в Японии. С 2001 года на долю Китая приходится примерно 50 % мировых продаж. В 1980 г. Китай потреблял около 1 % ювелирных изделий из платины. В настоящее время в Китае ежегодно продаётся около 10 млн изделий из платины общей массой около 25 тонн.

Российский спрос на ювелирную платину составляет 0,1 % от мирового уровня.

Монетарная функция[править | править вики-текст]

Платиновая монета 1835 года номиналом 12 рублей.

Платина, золото и серебро — основные металлы, выполняющие монетарную функцию. Однако платину стали использовать для изготовления монет на несколько тысячелетий позже золота и серебра.

Первые в мире платиновые монеты были выпущены и находились в обращении в Российской империи с 1828 по 1845 год. Чеканка началась с трехрублевиков. В 1829 г. «были учреждены платиновые дуплоны» (шестирублевики), а в 1830 г.— «квадрупли» (двенадцатирублевики). Были отчеканены следующие номиналы монет: достоинством 3, 6 и 12 рублей. Трехрублевиков было отчеканено 1 371 691 шт., шестирублевиков — 14 847 шт. и двенадцатирублевиков — 3474 шт[10].

В 1846 г. чеканка платиновой монеты была прекращена, хотя к этому году добыча уральской платины составила около 2000 пудов или 32 000 кг, из которых в монету было перечеканено 14 669 кг. Громадное количество платины, скопившееся на Петербургском монетном дворе частью в виде монеты, а частью в необработанном виде (по разным данным от 720 до 2000 пудов), было продано английской фирме Джонсон, Маттэ и Ко. В результате Англия, которая не добывала ни одного грамма платины, долго была в этой отрасли монополистом[22].

После 1846 года ни одна страна не позволяла себе «роскоши» вводить в обращение платиновые монеты. Выпускаемые разными странами в настоящее время платиновые монеты являются инвестиционными монетами. В период с 1992 по 1995 год инвестиционные платиновые монеты номиналами 25, 50 и 150 рублей выпускал Банк России.

Платиновое изображение Ленина на ордене Ленина.

Знаки отличия[править | править вики-текст]

Платина применялась при изготовлении знаков отличия за выдающиеся заслуги: из платины сделано изображение В. И. Ленина на советском ордене Ленина, из неё изготавливался советский орден «Победа» и советский орден Суворова 1-й степени[7]:221.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Т. 85. — № 5. — С. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02
  2. 1 2 3 4 5 Platinum: physical properties (англ.). WebElements. Проверено 17 августа 2013.
  3. 1 2 3 4 5 Редкол.: Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1992. — Т. 3. — С. 568. — 639 с. — 50 000 экз. — ISBN 5—85270—039—8.
  4. Издание книги Скалигера 1607 года доступно в интернете, см. в нём: Exercitatio LXXXVIII. Quæ ad Metallla // Julii Cæsaris Scaligeri Exotericarum exercitationum Liber XV, de Subtilitate, ad Hieronymum Cardanum. — 1607. — P. 323.
  5. McDonald D., Hunt L.B. A History of Platinum and its Allied Metals. — 1982. — P. 4-5.
  6. А.А.Шейпак. История науки и техники. Часть II. Материалы и технологии. Учебное пособие. — Москва: МГИУ, 2004. — 302 с. — ISBN 5-276-00545-1.
  7. 1 2 3 4 5 Погодин С.А. Благородные металлы // Книга для чтения по неорганической химии. Пособие для учащихся. Ч. II. — М.: Просвещение, 1975. — С. 206—221.
  8. de Ulloa A. Libro sexto, capitulo X. Dáse una breve noticia de los Minerales de Plata, y Oro, de que abunda la Provincia de Quito, y del methodo de extraer el Metal en algunos de Oro // Relacion historica del Viage a la America Meridional. Primera parte, tomo secundo. — Madrid, 1748. — P. 606.
  9. Lavoisier Antoine Traité Élémentaire de Chimie, présenté dans un ordre nouveau, et d'après des découvertes modernes. — Paris: Cuchet, Libraire, 1789. — P. 192.
  10. 1 2 Максимов М. М. Уральское золото // Очерк о золоте. — М.: Недра, 1977. — С. 83. — 128 с.
  11. Соболевский П. Об очищении и обработке сырой платины // Горный журнал. Ч. II, кн. 4. — 1827. — С. 84—109.
  12. Металлы платиновой группы. Информационно-аналитический центр «Минерал»
  13. Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197-208. — 304 с.
  14. Под ред. акад. Ю.Д.Третьякова Неограническая химия. Том 3. Химия переходных элементов.. — Москва: Академия, 2004. — 368 с. — ISBN 5-7695-1436-1.
  15. Всоцкий Н. К. Месторождения платины Исовского и Нижне-Тагильского районов на Урале. Вып. I. Спб., 1913; Пушкарёв Е. В. История открытия и добычи платины на Урале.
  16. Кравчук, П. А. Рекорды природы. — Любешов: Эрудит, 1993. — С. 85. — 216 с. — ISBN 5-7707-2044-1.
  17. М.Аксёнова, Е.Журавлёва, Т.Евсеева, О.Елисеева //Деньги мира. — Москва: Мир энциклопедий Аванта+, 2007. — С. 109, 131-132. — 184 с. — ISBN 978-5-98986-060-9.
  18. Mineral Commodity Summaries 2009
  19. Хребет Кондёр
  20. Беднеющие руды вооружают горняков
  21. Смотри: Семен Бадаев
  22. Высоцкий Н.К. Ч. 1 // Платина и районы ее добычи. — Петроград, 1923. — 344 с.

Ссылки[править | править вики-текст]