Алгебраическая теория чисел

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Алгебраическая теория чисел — раздел теории чисел, основная задача которого — изучение свойств целых элементов числовых полей.

В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают корни многочленов с рациональными коэффициентами. При этом аналогом целых чисел выступают целые алгебраические числа, то есть корни унитарных многочленов с целыми коэффициентами. В отличие от целых чисел в кольце целых алгебраических чисел не обязательно выполняется свойство факториальности, то есть единственности разложения на простые множители.

Теория алгебраических чисел обязана своим появлением изучению диофантовых уравнений и в том числе попыткам доказать теорему Ферма. Куммеру принадлежит равенство

x^n=z^n-y^n=\prod^{n}_{i=1}(z-a_i y), где a_i — корни степени n из единицы.

Таким образом Куммер определил новые целые числа вида z+a_i y. Позднее Лиувилль показал, что если алгебраическое число является корнем уравнения степени n, то к нему нельзя подойти ближе чем на Q^{-n}, приближаясь дробями вида P/Q, где P и Q — целые взаимно простые числа[1].

После определения алгебраических и трансцендентных чисел в алгебраической теории чисел выделилось направление, которое занимается доказательством трансцендентности конкретных чисел, и направление, которое занимается алгебраическими числами и изучает степень их приближения рациональными и алгебраическими[1].

Алгебраическая теория чисел включает в себя такие разделы, как теорию дивизоров, теорию Галуа, теорию полей классов, дзета- и L-функции Дирихле, когомологии групп и многое другое.[источник не указан 89 дней]

Одним из основных приёмов является вложение поля алгебраических чисел в своё пополнение по какой-то из метрик — архимедовой (например, в поле вещественных или комплексных чисел) или неархимедовой (например, в поле p-адических чисел).

Примечания[править | править вики-текст]

Литература[править | править вики-текст]