Алгебра Кодда

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Реляционные операторы[править | править исходный текст]

Совместимость отношений[править | править исходный текст]

Отношения, совместимые по объединению[править | править исходный текст]

Реляционные операторы объединения, пересечения и взятия разности требуют, чтобы отношения имели одинаковые заголовки. Действительно, отношения состоят из заголовка и тела. Операция объединения двух отношений есть просто объединение двух множеств кортежей, взятых из тел соответствующих отношений.
Отношения называются совместимыми по объединению, если

  • имеют одно и то же множество имен атрибутов, то есть для любого атрибута в одном отношении найдется атрибут с таким же наименованием в другом отношении,
  • атрибуты с одинаковыми именами определены на одних и тех же доменах.

Некоторые отношения не являются совместимыми по объединению, но становятся таковыми после некоторого переименования атрибутов.

Отношения, совместимые по взятию расширенного декартова произведения[править | править исходный текст]

Реляционный оператор расширенного декартова произведения требует, чтобы отношения-операнды не обладали одноименными атрибутами. Отношения называются совместимыми по взятию расширенного декартова произведения, если пересечение множеств имен атрибутов, взятых из их схем отношений, пусто.

Оператор переименования атрибутов[править | править исходный текст]

В результате применения оператора переименования атрибутов получаем новое отношение, с измененными именами атрибутов.
Синтаксис:
R RENAME Atr1, Atr2, … AS NewAtr1, NewAtr2,
где
R — отношение
Atr1, Atr2, … — исходные имена атрибутов
NewAtr1, NewAtr2, … — новые имена атрибутов

Оператор присваивания[править | править исходный текст]

Оператор присваивания (:=) позволяет сохранить результат вычисления реляционного выражения в существующем отношении.

Теоретико-множественные операторы[править | править исходный текст]

Объединение[править | править исходный текст]

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих или A, или B, или обоим отношениям.
Синтаксис:
A UNION B

Пересечение[править | править исходный текст]

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям A и B.
Синтаксис:
A INTERSECT B

Вычитание[править | править исходный текст]

Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих отношению A и не принадлежащих отношению B.
Синтаксис:
A MINUS B

Декартово произведение[править | править исходный текст]

Отношение (A1, A2, …, Am, B1, B2, …, Bm), заголовок которого является сцеплением заголовков отношений A(A1, A2, …, Am) и B(B1, B2, …, Bm), а тело состоит из кортежей, являющихся сцеплением кортежей отношений A и B:

(a1, a2, …, am, b1, b2, …, bm)

таких, что (a1, a2, …, am)A, (b1, b2, …, bm)B.

Синтаксис:

A TIMES B

Специальные реляционные операторы[править | править исходный текст]

Выборка (ограничение)[править | править исходный текст]

Отношение с тем же заголовком, что и у отношения A, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие c дают значение ИСТИНА. c представляет собой логическое выражение, в которое могут входить атрибуты отношения A и/или скалярные выражения.
Синтаксис:
A WHERE c

Проекция[править | править исходный текст]

Проекция в реляционной алгебре — унарная операция, которая позволяет получить «вертикальное» подмножество данного отношения, или таблицы, то есть такое подмножество, которое получается выбором специфицированных атрибутов с последующим исключением, если это необходимо, избыточных дубликатов кортежей. Пусть дана таблица T с именами атрибутов A_1,\;A_2,\;\ldots,\;A_n, то есть T(A_1,\;A_2,\;\ldots,\;A_n) и некоторое подмножество множества имен атрибутов \{A_{i_1},\;A_{i_2},\;\ldots,\;A_{i_k}\}. Результатом проекции таблицы по выбранным именам атрибутов называется новая таблица T(A_{i_1},\;A_{i_2},\;\ldots,\;A_{i_k}), полученная из исходной таблицы вычеркиванием атрибутов, не входящих в выбранное множество, с последующим возможным удалением избыточных дубликатов кортежей.

При осуществление проекции необходимо задать проецируемое отношение и некий набор его атрибутов, который станет заголовком результирующего.

Соединение[править | править исходный текст]

Операция соединения есть результат последовательного применения операций декартового произведения и выборки. Если в отношениях и имеются атрибуты с одинаковыми наименованиями, то перед выполнением соединения такие атрибуты необходимо переименовать.
Синтаксис:
(A TIMES B) WHERE c

Деление[править | править исходный текст]

Отношение с заголовком (X1, X2, …, Xn) и телом, содержащим множество кортежей (x1, x2, …, xn), таких, что для всех кортежей (y1, y2, …, ym) ∈ B в отношении A(X1, X2, …, Xn, Y1, Y2, …, Ym) найдется кортеж (x1, x2, …, xn, y1, y2, …, ym).
Синтаксис:
A DIVIDEBY B

Зависимость реляционных операторов[править | править исходный текст]

Не все реляционные операторы являются независимыми, то есть некоторые из реляционных операторов могут быть выражены через другие реляционные операторы.

  • Оператор соединения

Оператор соединения определяется через операторы декартового произведения и выборки следующим образом: (A TIMES B) WHERE X=Y где X и Y атрибуты соответственно отношений A и B с первоначально равными именами.

  • Оператор пересечения

Оператор пересечения выражается через вычитание следующим образом: A INTERSECT B = A MINUS (A MINUS B)

  • Оператор деления

Оператор деления выражается через операторы вычитания, декартового произведения и проекции следующим образом: A DIVIDEBY B = A[X] MINUS ((A[X] TIMES B) MINUS A)[X]

Примитивные реляционные операторы[править | править исходный текст]

Оставшиеся реляционные операторы (объединение, вычитание, декартово произведение, выборка, проекция) являются примитивными операторами — их нельзя выразить друг через друга.

  • Оператор декартового произведения

Оператор декартового произведения — это единственный оператор, увеличивающий количество атрибутов, поэтому его нельзя выразить через объединение, вычитание, выборку, проекцию.

  • Оператор проекции

Оператор проекции — единственный оператор, уменьшающий количество атрибутов, поэтому его нельзя выразить через объединение, вычитание, декартово произведение, выборку.

  • Оператор выборки

Оператор выборки — единственный оператор, позволяющий проводить сравнения по атрибутам отношения, поэтому его нельзя выразить через объединение, вычитание, декартово произведение, проекцию.

  • Операторы объединения и вычитания

Доказательство примитивности операторов объединения и вычитания более сложны и мы их здесь не приводим.