Альфа-частица

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Альфа-частица

А́льфа-части́ца (α-частица) — положительно заряженная составная частица, образованная 2 протонами и 2 нейтронами; идентична ядру атома гелия-4 (\textstyle{{}^4_2\mathrm{He}^{2+}}). Образуется при альфа-распаде ядер, при ядерных реакциях и в результате полной ионизации атомов гелия-4. Альфа-частицы могут вызывать ядерные реакции; в первой искусственно вызванной ядерной реакции (Э. Резерфорд, 1919, превращение ядер азота в ядра кислорода) участвовали именно альфа-частицы. Поток альфа-частиц называют альфа-лучами или альфа-излучением[1].

Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8-15 МэВ[2]. При движении альфа-частицы в веществе она создаёт сильную ионизацию окружающих атомов и в результате очень быстро теряет энергию. Энергии альфа-частиц, возникающих в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Внешнее альфа-облучение опасно для здоровья только в случае высокоэнергичных альфа-частиц (с энергией выше десятков МэВ), источником которых является ускоритель. Однако проникновение альфа-активных радионуклидов внутрь тела, когда облучению подвергаются непосредственно живые ткани организма, весьма опасно для здоровья, поскольку большая плотность ионизации вдоль трека частицы сильно повреждает биомолекулы. Считается[3], что при равном энерговыделении (поглощённой дозе) эквивалентная доза, набранная при внутреннем облучении альфа-частицами с энергиями, характерными для радиоактивного распада, в 20 раз выше, чем при облучении гамма- и рентгеновскими квантами. Однако следует отметить, что линейная передача энергии высокоэнергичных альфа-частиц (с энергиями 200 МэВ и выше) значительно меньше, в связи с чем их относительная биологическая эффективность сравнима с таковой для гамма-квантов и бета-частиц.

Тяжёлые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжёлой частицы R измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (м, см, мкм), а также поверхностной плотности материала (или, что равнозначно, длины пробега, умноженной на плотность) (г/см2). Выражение пробега в единицах длины имеет смысл для фиксированной плотности среды (например, часто в качестве среды выбирается сухой воздух при нормальных условиях). Физический смысл пробега в терминах поверхностной плотности — масса единицы площади слоя, достаточного для остановки частицы.

Пробеги альфа-частиц в некоторых средах
Энергия α-частиц, МэВ 4 6 8 10
Воздух при нормальных условиях, см 2,5 4,6 7,4 10,6
Биологическая ткань, мкм 31 56 96 130
алюминий, мкм 16 30 48 69

Таким образом, опасность для человека при внешнем облучении могут представлять α-частицы с энергиями 10 МэВ и выше, достаточными для преодоления омертвевшего рогового слоя кожного покрова. В то же время большинство исследовательских ускорителей α-частиц работает на энергиях ниже 3 МэВ.[4].

Альфа-частицы образуются также в результате ядерных реакций. Например, в результате взаимодействия ядра лития-6 с дейтроном могут образоваться две альфа-частицы: 6Li+2H=4He+4He. Альфа-частицы составляют существенную часть первичных космических лучей; большинство из них являются ускоренными ядрами гелия (из звёздных атмосфер и межзвёздного газа), некоторые возникли в результате ядерных реакций скалывания из более тяжёлых ядер космических лучей. Альфа-частицы высоких энергий могут быть получены с помощью ускорителей заряженных частиц.

Масса альфа-частицы составляет 6,644656·10−27 кг, что эквивалентно энергии 3,72738 ГэВ. Спин и магнитный момент равны нулю. Энергия связи 28,11 МэВ (7,03 МэВ на нуклон)[5].

Детектируются альфа-частицы с помощью кремниевых pin-диодов и соответствующей усилительной электроники, а также с помощью трековых детекторов.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Взаимодействие частиц с веществом
  2. В некоторых случаях при альфа-распаде ядро, излучающее альфа-частицу, может вначале перейти в возбуждённое состояние. При этом энергия испускаемой альфа-частицы оказывается меньше, чем при переходе на основной уровень дочернего ядра, поскольку часть энергии остаётся в ядре. Возбуждённый уровень впоследствии распадается в основное состояние ядра, а энергия уносится гамма-квантом или передаётся электронам атомной оболочки (см. Внутренняя конверсия). Однако вероятность перехода ядра при альфа-распаде на возбуждённый уровень, как правило, сильно подавлена, что связано с экспоненциальным уменьшением вероятности альфа-распада при уменьшении кинетической энергии излучаемых альфа-частиц.
  3. Публикация 103 Международной Комиссии по радиационной защите (МКРЗ). Пер с англ. / Под общей ред. М.Ф.Киселёва и Н.К.Шандалы. — М.: Изд. ООО ПКФ "Алана", 2009. — С. 68-71. — 1000 экз. — ISBN 978-5-9900350-6-5
  4. О. И. Василенко, Б. С. Ишханов, И. М. Капитонов, Ж. М. Селиверстова, А. В. Шумаков «РАДИАЦИЯ», М., Изд-во Московского университета. 1996.
  5. Альфа-частица Большая Советская Энциклопедия