Альфа Кронбаха

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Коэффицие́нт а́льфа Кронба́ха \alpha показывает внутреннюю согласованность характеристик, описывающих один объект, но не является показателем гомогенности объекта. Коэффициент часто используется в общественных науках и психологии при построении тестов и для проверки их надёжности.

История[править | править вики-текст]

Впервые название \alpha дал коэффициенту Ли Кронбах в 1951 году, хотя независимо от его исследований в 1949 году уже была известна формула для проверки надёжности психологических тестов, а Луис Гуттман уже в 1945 году использовал этот же коэффициент под именем \lambda_2.

Формула[править | править вики-текст]

Стандартизированный коэффициент альфа Кронбаха \alpha_{st} вычисляется по формуле:

\alpha_{st} = {N\cdot\bar r \over 1 + (N-1)\cdot\bar r},

где N является количеством исследуемых компонентов, а \bar r определяет средний коэффициент корреляции между компонентами. Также коэффициент можно вычислить по следующей формуле:

\alpha = { { {N} \over{N-1} } \left( { { \sigma^{2}_{X} - \sum_{i=1}^N{\sigma^{2}_{Y_i}}} \over{\sigma^{2}_{X}} } \right) } mit X=\sum_{i=1}^N Y_i,

где N измеряет число исследуемых компонентов, \sigma^{2}_{X} — СКО всех исследованных множеств, а \sigma^{2}_{Y_i} СКО отдельного компонента.

Значение[править | править вики-текст]

\alpha \, Значение
> 0.9 очень хорошее
> 0.8 хорошее
> 0.7 достаточное
> 0.6 сомнительное
> 0.5 плохое
\leq 0,5 недостаточное

Альфа Кронбаха может принимать значения от 1 до — ∞, но интерпретации поддаются только положительные значения. Если коэффициент принимает значение 1, то тест полностью надёжен[1].

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • Кронбах, Ли; Coefficient alpha and the internal structure of tests; Psychometrika, 16, 297-334; 1951
  • Шмитт, Нил; Uses and Abuses of Coefficient Alpha; Psychological Assessment, 8(4); S. 350-353; 1996