Квантовый гармонический осциллятор

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Ангармонический осциллятор»)
Перейти к навигации Перейти к поиску

Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике, представляющая собой параболическую потенциальную яму для частицы массой и являющаяся аналогом простого гармонического осциллятора. При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан, то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Задача о гармоническом осцилляторе в координатном представлении[править | править код]

Волновые функции в координатном представлении первых восьми состояний, . По горизонтали отложена координата , по вертикали — значение волновой функции . Графики не нормированы.

Гамильтониан квантового осциллятора массы m, собственная частота которого ω, выглядит так:

В координатном представлении , . Задача об отыскании уровней энергии гармонического осциллятора сводится к нахождению таких чисел E при которых дифференциальное уравнение в частных производных

имеет решение в классе квадратично интегрируемых функций.

Для

решение имеет вид:

функции  — полиномы Эрмита:

Данный спектр значений E заслуживает внимания по двум причинам: во-первых, уровни энергии дискретны и равноотстоящи (эквидистантны), то есть разница в энергии между двумя соседними уровнями постоянна и равна ; во-вторых, наименьшее значение энергии равно . Этот уровень называют основным, вакуумом, или уровнем нулевых колебаний.

Операторы рождения и уничтожения[править | править код]

Гораздо проще спектр гармонического осциллятора можно получить с помощью операторов рождения и уничтожения, сопряжённых друг другу.

Оператор рождения — , оператор уничтожения — , их коммутатор равен

С помощью операторов рождения и уничтожения гамильтониан квантового осциллятора записывается в компактном виде:

где  — оператор номера уровня (чисел заполнения). Собственные вектора такого гамильтониана являются фоковскими состояниями, а представление решения задачи в таком виде называется «представлением числа частиц».

Ангармонический осциллятор[править | править код]

Под ангармоническим осциллятором понимают осциллятор с неквадратичной зависимостью потенциальной энергии от координаты. Простейшим приближением ангармонического осциллятора является приближение потенциальной энергии до третьего слагаемого в ряде Тейлора:

Точное решение задачи о спектре энергии такого осциллятора довольно трудоёмкое, однако можно вычислить поправки к энергии, если предположить, что кубическое слагаемое мало по сравнению с квадратичным, и воспользоваться теорией возмущений.

В представлении операторов рождения и уничтожения (представление вторичного квантования) кубическое слагаемое равно

Этот оператор имеет нулевые диагональные элементы, а потому первая поправка теории возмущений отсутствует. Вторая поправка к энергии произвольного невакуумного состояния равна

Многочастичный квантовый осциллятор[править | править код]

В простейшем случае взаимодействия нескольких частиц можно применить модель многочастичного квантового осциллятора, подразумевая взаимодействие соседних частиц по квадратичному закону:

Здесь под и подразумеваются отклонение от положения равновесия и импульс -той частицы. Суммирование ведётся только по соседним частицам.

Такая модель приводит к теоретическому обоснованию фононов — Бозе-квазичастиц, наблюдающихся в твёрдом теле.

Переходы под влиянием внешней силы[править | править код]

Под влиянием внешней силы квантовый осциллятор может переходить с одного уровня энергии () на другой (). Вероятность этого перехода для осциллятора без затухания даётся формулой:

,

где функция определяется как:

,

а  — полиномы Лагерра.

См. также[править | править код]

Литература[править | править код]

Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 3-е, переработанное и дополненное. — М.: Наука, 1974. — 752 с. — («Теоретическая физика», том III).