Антидетонаторы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Антидетона́торы — химические соединения, добавляемые в небольших количествах к моторным топливам для уменьшения детонации. Список веществ, позволяющих повысить антидетонационные свойства топлив, достаточно обширен, однако не все из них могут использоваться ввиду технологических ограничений или по причинам экологического характера.

Метил-трет-бутиловый эфир[править | править вики-текст]

Метил-трет-бутиловый эфир (МТБЭ) в настоящее время считается самым перспективным антидетонатором. В России его разрешено добавлять в автомобильные топлива в количестве до 15%. Ограничения вызваны особенностями эксплуатационных характеристик - относительно низкой теплотой сгорания и высокой агрессивностью по отношению к резинам. Согласно результатам дорожных испытаний, неэтилированные бензины, содержащие 7-8% МТБЭ, превосходят этилированные бензины при всех скоростях движения. МТБЭ представляет собой бесцветную прозрачную жидкость с резким запахом. Температура кипения составляет 54-55°С, плотность 0,74 г/см3. Октановое число по исследовательскому методу составляет 115-135 пунктов. Мировое производство МТБЭ исчисляется десятками миллионов тонн в год.

В качестве потенциальных антидетонаторов возможно применение этил-трет-бутилового эфира, трет-амилметилового эфира, а также простых метиловых эфиров, полученных из олефинов С67. Кроме того рассматриваются спирты: метиловый, этиловый, втор-бутиловый и трет-бутиловый.

Для получения бензинов АИ-95 и АИ-98 обычно используют добавки МТБЭ или его смесь с трет-бутиловым спиртом, которая называется Фэтэрол - торговое название Октан-115. Недостатком таких кислородсодержащих компонентов является улетучивание эфиров в жаркую погоду, что ведет к понижению октанового числа.

Соединения свинца[править | править вики-текст]

Наиболее эффективными и дешевыми антидетонационными (октаноповышающими) присадками являются органические соединения свинца — тетраэтилсвинец (ТЭС) и тетраметилсвинец, причем первый получил большее распространение. ТЭС представляет собой густую бесцветную и ядовитую жидкость с температурой кипения 200°С. ТЭС хорошо растворяется в углеводородах и плохо в воде. Он ингибирует образование перекисных соединений в топливе, понижая вероятность детонации. Способность ТЭС повышать антидетонационные свойства топлив была открыта в 1921 году, а уже два года спустя ТЭС стали интенсивно производить в промышленности.

ТЭС не применяют в чистом виде, поскольку образующийся металлический свинец осаждается на стенках цилиндров двигателя, что приводит к отказу последнего. По этой причине в смеси с ТЭС вводят так называемые выносители, которые образуют с металлическим свинцом летучие соединения. Выносители обычно представляют собой хлор- или бромсодержащие соединения. Смесь ТЭС и выносителя называют этиловой жидкостью, а бензин, содержащий добавки этилой жидкости, — этилированным.

Этиловая жидкость очень эффективна в повышении антидетонационных свойств топлив. Добавка долей процента этиловой жидкости в бензин позволяет увеличить его октановое число на 5—10 пунктов. Самая эффективная концентрация ТЭС составляет 0,5—0,8 г на 1 кг бензина. Более высокие концентрации ведут к повышению токсичности топлива, тогда как детонационная стойкость возрастает незначительно. С ростом содержания ТЭС также может снижаться надежность работы двигателя из-за накопления свинца камере сгорания. Если в топливе содержится сера, то эффективность ТЭС резко снижается, поскольку образующийся сернистый свинец препятствует разложению перекисей. При хранении этилированных бензинов их детонационная стойкость уменьшается в результате разложения ТЭС. Этот процесс ускоряется при наличии в топливе воды, осадков, смол, хранении при повышенной температуре и др.

Однако ТЭС очень ядовит и является канцерогенным веществом. Он может проникать в кровь человека через поры кожи и постепенно накапливаться в ней. Также возможно попадание в организм через дыхательные пути, что может вызвать тяжелые заболевания. В пище даже небольшие дозы ТЭС вызывают смертельные отравления. Свинцовые соединения, удаляющиеся из двигателя с выхлопными газами, оседают в почве и откладываются в листьях придорожной растительности. Обнаружено повышенное содержание свинца даже в шерсти городских собак.

Антидетонаторы на основе ТЭС в Российской Федерации запрещены ГОСТ Р 51105-97, который регламентирует производство только неэтилированных бензинов. В Европе и других развитых стран от ТЭС также отказались с введением норм Евро-2.

Соединения марганца[править | править вики-текст]

В качестве антидетонационных присадок эффективны два соединения на основе марганца: циклопентадиенилтрикарбонилмарганец (ЦТМ) C5H5Mn(CO)3 и метилциклопентадиенилтрикарбонилмарганец (МЦТМ) СH3C5H4Mn(CO)3. Первый представляет собой кристаллический порошок желтого цвета, второй - прозрачную маловязкую жидкость янтарного цвета с травянистым запахом, температурой кипения 233°С, плотностью 1,3884 г/см3 и температурой застывания 1,5°С. МЦТМ хорошо растворим в бензине и практически нерастворим в воде.

Оба эти соединения мало отличаются по эксплуатационным свойствам и имеют примерно одинаковую эффективность. В пересчете на общее количество присадок марганцевые соединения не отличаются по эффективности от ТЭС, однако в пересчете на содержание металла они эффективнее. При этом токсичность марганцевых присадок в 300 раз ниже. Их недостатком, однако, является разложение на свету, что ведет к потере антидетонационных свойств. Несмотря на высокую эффективность их применение ограничено требованиями экологичности.

Соединения железа[править | править вики-текст]

В качестве антидетонаторов представляют интерес пентакарбонил железа, диизобутиленовый комплекс пентакарбонила железа и ферроцен. Эффективность пентакарбонила железа Fe(CO)5 была обнаружена в 1924 году. Он представляет собой светло-желтую жидкость с характерным запахом (плотность 1,457 г/см3, температура кипения 102,2°С, температура плавления 20°С). Его применяли в 1930-е годы в Германии в концентрации 2-2,5 мл/кг. Затем, однако, его использование было прекращено ввиду того, что при его сгорании образовывались оксиды железа, нарушавшие работу свечей зажигания. При этом увеличивался износ стенок цилиндра двигателя. Прирост октанового числа в случае Fe(CO)5 на 15-20% ниже, чем при использовании этиловой жидкости. Его недостатком также является склонность к быстрому разложению на свету до нерастворимого карбонила Fe(CO)9.

Диизобутиленовый комплекс пентакарбонила железа [Fe(CO)5]3[C8H16]5 представляет собой жидкость с плотностью 0,955 г/см3 и температурой кипения 27-32°С, хорошо растворимую в бензине. По антидетонационной стойкости он близок пентакарбонилу железа.

Ферроцен (С5H5)2Fe - это легковоспламеняющийся кристаллический порошок оранжевого цвета (температура плавления 174°С, кипения 249°С, разложения 474°С). Он полностью растворим в бензине и обладает большей антидетонационной стойкостью, чем другие соединения железа. Ферроцен и его производные можно использовать в составе бензинов всех марок при концентрации железа не более 37 мг/мл. Концентрацию ферроцена ограничивают по двум причинам. Во-первых, из-за образования окислов железа, которые остаются в виде нагара на частях двигателя, а также накапливаются в масле. Во-вторых, из-за повышения склонности бензина к смолообразованию.

Аминные соединения[править | править вики-текст]

Анилин С6H5NH2 представляет собой бесцветную маслянистую жидкость с температурой кипения 184°С и температурой плавления -6°С. Анилин является ядовитым соединением и обладает ограниченной растворимостью в бензине. На воздухе он окисляется и темнеет. При низких температурах смеси анилина с бензином подвержены расслоению, поэтому в чистом виде анилин как антидетонатор не применяется.

Ароматические амины обладают высоким антидетонационным эффектом, но к применению допущен только монометиланилин (N-метиланилин) - С6H5NHCH3. Он представляет собой маслянистую жидкость желтого цвета с плотностью 0,98 г/см3, растворимую в бензинах, спиртах и эфирах. Октановое число по исследовательскому методу 280. Однако ароматические амины обладают существенным недостатком - они склонны к смолообразованию и влекут увеличение износа деталей двигателя.

Сравнительные свойства антидетонаторов[править | править вики-текст]

Независимо от химической природы антидетонатора его концентрация в топливе по той или иной причине ограничена, что ведет к ограниченному приросту октанового числа. Кроме того, прирост октанового числа нелинейно зависит от концентрации добавки и для каждого антидетонатора существует максимальная концентрация, выше которой он уже не проявляет дополнительного эффекта.

Сравнительные свойства антидетонаторов[1]

Тип присадки Макс. конц. Причина ограничения Макс. прирост ОЧ
Оксигенаты 15% Относительно низкая теплота сгорания и высокая агрессивность по отношению к резинам 4-6
Pb-содержащие 0,17 г Pb/л Высокий уровень токсичности и нагарообразования в камере сгорания 8
Mn-содержащие 50 мг Mn/л Повышенный износ, нагарообразование на свечах зажигания и в камере сгорания 5-6
Fe-содержащие 38 мг Fe/л Повышенный износ, нагарообразование на свечах зажигания и в камере сгорания 3-4
Ароматические амины 1-1,3% Осмоление деталей двигателя и топливной системы. Увеличение износа деталей цилиндро-поршневой группы 6

Примечания[править | править вики-текст]

  1. Е.В.Бойко Химия нефти и топлив. Учебное пособие. — Ульяновск: УлГТУ, 2007. — 60 с. — ISBN 978-5-89146-900-0