Волновая функция

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Квантовая механика
\Delta x\cdot\Delta p_x \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение
Математические основы
См. также: Портал:Физика

Волнова́я фу́нкция, или пси-функция \psi \,комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

\left|\psi(t)\right\rangle=\int \Psi(x,t)\left|x\right\rangle dx

где \left|x\right\rangle = \left|x_1, x_2, \ldots , x_n\right\rangle  — координатный базисный вектор, а \Psi(x,t)= \langle x\left|\psi(t)\right\rangle — волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Физический смысл волновой функции[править | править вики-текст]

В координатном представлении волновая функция \! \Psi(x_1, x_2, \ldots , x_n,t) зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля \! \left|\Psi(x_1, x_2, \ldots , x_n,t)\right|^2, который интерпретируется как плотность вероятности ~\omega (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами  \! x_1=x_{01}, x_2=x_{02}, \ldots , x_n=x_{0n} в момент времени ~t:

~\omega = \frac{dP}{dV} = \left|\Psi(x_1, x_2, \ldots , x_n,t)\right|^2  = \Psi^\ast\Psi.

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией \! \Psi(x_1, x_2, \ldots , x_n,t), можно рассчитать вероятность ~P того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема ~V: P={\int{dP}}={\int\limits_{V} {\omega}dV}={\int\limits_{V}{\Psi^\ast\Psi}dV}     ~(1).

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.

Волновая функция в различных представлениях[править | править вики-текст]

Набор координат, которые выступают в роли аргументов функции, представляет собой полную систему коммутирующих наблюдаемых. В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции. Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс.

Принцип суперпозиции квантовых состояний[править | править вики-текст]

Для волновых функций справедлив принцип суперпозиции, заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями \! \Psi_1 и \! \Psi_2, то она может пребывать и в состоянии, описываемом волновой функцией

\! \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 при любых комплексных \! c_1 и \! c_2.

Очевидно, что можно говорить и о суперпозиции (сложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией \! \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 + \ldots + {c}_N{\Psi}_N=\sum_{n=1}^{N} {c}_n{\Psi}_n.

В таком состоянии квадрат модуля коэффициента ~{c}_n определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией ~{\Psi}_n.

Поэтому для нормированных волновых функций ~\sum_{n=1}^{N}\left|c_{n}\right|^2=1.

Условия регулярности волновой функции[править | править вики-текст]

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

  1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл ~(1) станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
  2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
  3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции ~\frac{\partial \Psi}{\partial x}, ~\frac{\partial \Psi}{\partial y}, ~\frac{\partial \Psi}{\partial z}. Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода.

Нормированность волновой функции[править | править вики-текст]

Волновая функция \! \Psi по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

 {\int\limits_{V}{\Psi^\ast\Psi}dV}=1

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Матричная и векторная формулировки[править | править вики-текст]

Волновая функция одного и того же состояния в различных представлениях — будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Философский смысл волновой функции[править | править вики-текст]

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности. То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, — это проблема самой сути научного метода познания мира.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Физический энциклопедический словарь./Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. — М.: Сов. Энциклопедия, 1984. — 944 с.

Ссылки[править | править вики-текст]