Высотный класс

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Высо́тный класс, звуковысотный класс (англ. pitch class) в теории музыкимножество всех звуковых высот, отстоящих друг от друга на целое число октав. При неформальном описательном определении, высотный класс — это высота звука, рассматриваемая с точностью до октав. Например, высотный класс A (ля) включает в себя не только высоту ля первой октавы (эталонного камертона частотой 440 Гц, например), но и все звуковые высоты, отстоящие на целое число октав от данной — как вниз, так и вверх. Термин, введённый в работах американских музыковедов послевоенного времени, ныне используется также в некоторых странах западной Европы в рамках так называемой англ. pitch class set theory — в основном, для анализов нетональной музыки XX-XXI вв.

Термин и понятие[править | править вики-текст]

Термин pitch class — изобретение американских музыковедов XX века (М. Бэббитт, Дж. Перл и др.)[1] для понятия, которое в музыкальной науке существует более полутора тысяч лет. Первое письменное свидетельство об октавном тождестве звуков фиксированной высоты (др.-греч. φθόγγος, «фтонг»; это греческое слово англоязычные переводчики рутинно передают словом «pitch») принадлежит Птолемею (II в.н.э.), который открыл такое тождество и чётко зафиксировал в термине «гомофоны» (др.-греч. ὁμόφωνοι)[2]. Уже в следующем (III) веке в комментариях на «Гармонику» Птолемея Порфирия легко заметить, что «гомофоны» были вполне восприняты и осмыслены учёными. Тождество ступеней в звукоряде было тривиальным предметом и для средневековой, и для ренессансной, и для барочной музыкальной науки. В IX—X веках группа анонимных авторов (Псевдо-Хукбальд и его обширная школа) развивала идею особого дасийного звукоряда (и дасийной нотации, обозначающей ступени этого звукоряда), благодаря которому можно было импровизировать квинтовый органум (на англоязычный манер, можно сказать, была реализована идея «квинтового высотного класса»). Большое внимание октавному модальному тождеству уделил немецкий теоретик музыки Иоганн Липпий — в трудах "Третье рассуждение о музыке" (1610) и "Синопсис новой музыки" (1612). Тесное расположение трезвучия он обозначал термином radix nuda (букв. «один только корень»), а все фактурные разновидности трезвучия, возникающие от октавных удвоений «корневых» звуковысот (для них Липпий придумал особые термины trias diffusa и trias aucta), как он писал, «должны быть обязательно сводимыми к унисону» (debent posse referri ad unisonum).

Таким образом, понятие звуковысотного тождества октав в европейских научных традициях давно известно и рутинно используется (в русском учении о гармонии для этого ходовым является термин «модальное тождество»). Отсюда адаптация английского термина pitch class представляет собой скорее лингвистическую, чем музыкально-теоретическую проблему. Например, немецкая наука передаёт pitch class как нем. Tonklasse, где на место англ. pitch подставлено (очень многозначное) нем. Ton. В русской новейшей науке при переводе англ. словосочетания pitch class чаще всего встречается «высотный класс», где прилагательное «высотный» используется по принципу pars pro toto: подразумевается не любая «высота» (наподобие знаменитых «высотных» зданий в Москве), а высота звука. В данном конкретном случае «высотный» следует понимать как синоним слова «звуковысотный», и т.п. В целом передача английского термина pitch class в Старом свете не стабилизировалась, а в лексиконе некоторых европейских научных традиций и вовсе отсутствует (за ненадобностью).

Термин pitch class в англоязычном мире был подхвачен американским музыковедом Алленом Фортом (Forte), имя которого связывают с изобретением «теории звуковысотных множеств», англ. pitch class set theory (впрочем, часто без термина pitch class, просто «set theory»)[3], которая ныне используется (преимущественно в США и в некоторых странах западной Европы) в анализах высотной структуры нетональной музыки XX-XXI веков.

Математическое определение[править | править вики-текст]

С формально-математической точки зрения, высотный класс — это класс эквивалентности относительно октавного отношения эквивалентности, которое определяется следующим образом: два звука (ступени) эквивалентны, если интервал между ними составляет целое число октав. Иначе говоря, звуки с частотами \;f_1 и \;f_2 октавно эквивалентны (то есть принадлежат одному и тому же высотному классу) в том и только том случае, если отношение их частот равно целой (нулевой, положительной или отрицательной) степени двойки:

\frac{f_1}{f_2}=2^n,\quad n\in \mathbb Z.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Bent I.D., Pople A. Analysis (особенно см. §II: History) // The New Grove Dictionary of Music and Musicians. L., N.Y., 2001.
  2. Клавдий Птолемей. Гармоника в трех книгах. Порфирий. Комментарий к «Гармонике» Птолемея. Издание подготовил В.Г. Цыпин. М.: Научно-издательский центр "Московская консерватория", 2013. Список (многочисленных) вхождений термина см. в Предметном указателе к трактату Птолемея, на с.434. Краткое объяснение термина «гомофоны» на русском языке см. также на с.409 книги.
  3. Эту заслугу ему приписывает, например, голландец Michiel Schuijer в своей книге «Analyzing atonal music: pitch-class set theory and its contexts» (Rochester, 2008, p.3). Впрочем, в авторитетной энциклопедии NGD Форте упоминается не как создатель «pitch class set theory», а лишь как её разработчик.

Литература[править | править вики-текст]

  • Schuijer, Michiel. Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts. — Rochester, NY: University of Rochester Press, 2008. — Vol. 60. — P. 306. — (Eastman Studies in Music). — ISBN 978-1-58046-270-9.
  • Холопов Ю. Н., Кириллина Л. В., Кюрегян Т. С., Лыжов Г. И., Поспелова Р. Л., Ценова В. С. Музыкально-теоретические системы. Учебник для историко-теоретических и композиторских факультетов музыкальных вузов / В. С. Ценова (отв. ред.). — М.: Издательский дом «Композитор», 2006. — С. 531-543. — 632 с. — ISBN 5-85285-854-4.
  • Purwins, Hendrik. Profiles of Pitch Classes: Circularity of Relative Pitch and Key—Experiments, Models, Computational Music Analysis, and Perspectives (англ.) : Ph.D. Thesis. — Berlin: Technische Universität Berlin, 2005.
  • Rahn, John. Basic Atonal Theory. — 2nd edition. — New York: Schirmer Books, 1987. — P. 158. — ISBN 0-02-873160-3.