Геометрическая теория групп

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).

Геометрическая теория групп, как отдельная ветвь математики, появилась сравнительно недавно, и стала чётко выделяться в конце 1980-х-начале 1990-х. Геометрическая теория групп взаимодействует с маломерной топологией, гиперболической геометрией, алгебраической топологией, вычислительной теорией групп. Также она связана с теорией сложности, математической логикой, исследованием групп Ли и их дискретных подгрупп, динамическими системами, теорией вероятности, K-теорией, и другими областями математики.

История[править | править исходный текст]

См. также[править | править исходный текст]

Литература[править | править исходный текст]