Гептамино

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Гептамино — семиклеточное полимино, то есть плоская фигура, состоящая из семи равных квадратов, соединённых сторонами. С фигурами гептамино, как со всеми полимино, связано много задач занимательной математики.

108 фигур гептамино


Если не считать различными фигуры, совпадающие при поворотах и зеркальных отражениях, то различных («свободных») форм гептамино насчитывается 108 (см.рисунок)[1]. Существует 196 видов «односторонних» гептамино (если зеркальные отражения считаются различными фигурами) и 760 видов «фиксированных» гептамино (различными считаются также и повороты).[2]

Классификация гептамино по симметрии[править | править вики-текст]

108 свободных фигур гептамино по их свойствам симметрии можно разделить на 6 категорий:

  • 84 фигур гептамино (на рисунке изображены серым цветом) асимметричны;
  • 9 гептамино (изображены красным) имеют ось симметрии, параллельную линиям квадратной сетки;
  • 7 гептамино (изображены зелёным) имеют диагональную ось симметрии;
  • 4 гептамино (изображены синим) имеют центральную (вращательную) симметрию второго порядка;
  • 3 гептамино (изображены фиолетовым) имеют две оси симметрии, параллельных линиям сетки;
  • 1 гептамино (изображено оранжевым) имеет две диагональных оси симметрии.

Для односторонних гептамино (т.е. если зеркальные отражения фигур считать различными), первая и четвёртая категории удваиваются в численности, что даёт дополнительно 88 гептамино, т.е. в общей сложности 196. Для фиксированных гептамино (т.е. если повороты также рассматривать как различные фигуры), то первая категория возрастёт в восемь раз по сравнению со свободными гептамино, следующие три категории — в четыре раза, а две последние категории — в два. Это даст 84 \times 8 + (9 + 7 + 4) \times 4 + (3 + 1)\times 2 = 760 фиксированных гептамино.

Составление фигур из гептамино[править | править вики-текст]

Heptomino with hole.svg

Среди 108 свободных гептамино есть одна фигура с отверстием («неодносвязная»). Из этого следует, что сплошное покрытие какого-либо прямоугольника площадью 108\times7=756 квадратов полным набором гептамино невозможно. (Невозможно также покрыть полным набором гептамино прямоугольник площадью в 757 квадратов с отверстием в 1 квадрат, поскольку 757 — простое число, а составить из гептамино прямоугольник 1×757, очевидно, невозможно).

Три прямоугольника с отверстиями, составленные из 108 гептамино

Тем не менее, из полного набора в 108 гептамино можно сложить три прямоугольника 11×23, каждый с одноклеточным отверстием в центре. Разумеется, вокруг одного из этих отверстий должно располагаться неодносвязное гептамино. Комбинируя эти прямоугольники разными способами, можно получить прямоугольник 33×23 или 11×69 с тремя симметрично расположенными отверстиями.

Четыре прямоугольника и квадрат, составленные из 107 односвязных гептамино

Если отбросить неодносвязное гептамино, из остальных 107 односвязных фигур (общей площадью 749 квадратов) можно различными способами составить прямоугольник 7×107. В частности, из них можно сложить четыре прямоугольника 7×25 и один квадрат 7×7.

Примечания[править | править вики-текст]

  1. Голомб С. В. Полимино. — Пер. с англ. В.Фирсова. — М.: Мир, 1975. — 207 с., ил.
  2. Heptomino — from Wolfram MathWorld