Гидродинамика

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Механика сплошных сред
BernoullisLawDerivationDiagram.svg
Сплошная среда
См. также: Портал:Физика

Гидродина́мика — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкости и газа. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.

Основные разделы гидродинамики[править | править исходный текст]

Идеальная среда[править | править исходный текст]

С точки зрения механики, жидкостью называется вещество, в котором в равновесии отсутствуют касательные напряжения. Если движение жидкости не содержит резких градиентов скорости, то касательными напряжениями и вызываемым ими трением можно пренебречь и при описании течения. Если вдобавок малы градиенты температуры, то можно пренебречь и теплопроводностью, что и составляет приближение идеальной жидкости. В идеальной жидкости, таким образом, рассматриваются только нормальные напряжения, которые описываются давлением. В изотропной жидкости, давление одинаково по всем направлениям и описывается скалярной функцией.

Гидродинамика ламинарных течений[править | править исходный текст]

Гидродинамика ламинарных течений изучает поведение регулярных решений уравнений гидродинамики, в которых первые производные скорости по времени и по пространству являются конечными. В некоторых случаях со специальной геометрией уравнения гидродинамики могут быть решены точно. Некоторые наиболее важные задачи этого раздела гидродинамики:

Турбулентность[править | править исходный текст]

Турбулентность — название такого состояния сплошной среды, газа, жидкости, их смесей, когда в них наблюдаются хаотические колебания мгновенных значений давления, скорости, температуры, плотности относительно некоторых средних значений, за счёт зарождения, взаимодействия и исчезновения в них вихревых движений различных масштабов, а также линейных и нелинейных волн, солитонов, струй. Происходит их нелинейное вихревое взаимодействие и распространение в пространстве и времени. Турбулентность возникает, когда число Рейнольдса превышает критическое.

Турбулентность может возникать и при нарушении сплошности среды, например, при кавитации (кипении). При опрокидывании и разрушении волны прибоя возникает многофазная смесь воды, воздуха, пены. Мгновенные параметры среды становятся хаотичными.

Существуют три зоны турбулентности, в зависимости от переходных чисел Рейнольдса: зона гладкостенного трения, переходная зона(смешанного трения)и зона гидравлически шероховатых труб (зона квадратического трения). Все магистральные нефте- и газопроводы эксплуатируются в зоне гидравлически шероховатых труб.

Турбулентное течение, по-видимому, может быть описано системой нелинейных дифференциальных уравнений. В неё входит уравнения Навье — Стокса, неразрывности и энергии.

Моделирование турбулентности — одна из наиболее трудных и нерешённых проблем в гидродинамике и теоретической физике. Турбулентность всегда возникает при превышении некоторых критических параметров: скорости и размеров обтекаемого тела или уменьшения вязкости. Она также может возникать при сильно неравномерных граничных и начальных условиях на границе обтекаемого тела. Или, может исчезать при сильном ускорении потока на поверхности, при сильной стратификации среды. Поскольку турбулентность характеризуется случайным поведением мгновенных значений скорости и давления, температуры в данной точке жидкости или газе, то это означает, что при одних и тех же условиях детальная картина распределения этих величин в жидкости будет различной и практически никогда не повторяется. Поэтому, мгновенное распределение скорости в различных точках турбулентного потока обычно не представляет интереса, а важными являются осреднённые величины. Проблема описания гидродинамической турбулентности заключается, в частности, и в том, что пока не удаётся на основании только уравнений гидродинамики предсказать, когда именно должен начинаться турбулентный режим и что именно в нём должно происходить без экспериментальных данных. На суперкомпьютерах удаётся моделировать только некоторые типы течений. В результате, приходится довольствоваться лишь феноменологическим, приближенным описанием. До конца XX столетия два результата, описывающие турбулентное движение жидкости считались незыблемыми — «универсальный» закон фон Кармана-Прандтля о распределении средней локальной скорости течения жидкости (вода, воздух) в гладких трубах при высоких значениях числа Рейнольдса и теория Колмогорова-Обухова о локальной структуре турбулентности.

Значительный прорыв в теории турбулентности при очень высоких числах Рейнольдса связан с работами Андрея Николаевича Колмогорова 1941 и 1962 годов, который установил, что при некотором интервале чисел Рейнольдса локальная статистическая структура турбулентности носит универсальный характер, зависит от нескольких внутренних параметров и не зависит от внешних условий.

Сверхзвуковая гидродинамика[править | править исходный текст]

Этот раздел изучает поведение течений при их скоростях вблизи или превышающих скорость звука в среде. Отличительной особенностью такого режима является то, что при нем возникают ударные волны. В определённых случаях, например, при детонации, структура и свойства ударной волны усложняются. Интересен также случай, когда скорости течений столь высоки, что становятся близкими к скорости света. Такие течения наблюдаются во многих астрофизических объектах, и их поведение изучает релятивистская гидродинамика.

Тепломассообмен[править | править исходный текст]

Часто течения жидкостей сопровождается неравномерным распределением температуры (остывание тел в жидкости, течение горячей жидкости по трубам). При этом свойства жидкости (плотность, вязкость, теплопроводность) могут сами зависеть от локальной температуры. В таком случае задача о распространении тепла и задача движения жидкости становятся связанными. Дополнительная сложность таких задач состоит в том, что зачастую простейшие решения становятся неустойчивыми…

Геофизическая гидродинамика[править | править исходный текст]

Посвящена исследованию явлений и физических механизмов естественных крупномасштабных турбулентных течений на вращающейся планете (динамики атмосферы, динамики течний в морях и океанах, циркуляции в жидком ядре, происхождение и изменчивость планетарного магнитного поля).

Магнитная гидродинамика[править | править исходный текст]

Описывает поведение электропроводящих сред (жидких металлов, электролитов, плазмы) в магнитном поле.

Теоретическая основа магнитной гидродинамики — уравнения гидродинамики с учетом электрических токов и магнитных полей в среде и уравнений Максвелла. В средах с большой проводимостью (горячая плазма) и (или) большими размерами (астрофизические объекты) к обычному газодинамическому давлению добавляются магнитное давление и магнитное натяжение, которое приводит к появлению волн Альфве́на.

С помощью магнитной гидродинамики описываются многие явления космической физики: планетарные и звездные магнитные поля, происхождение магнитных полей галактик, солнечный цикл, хромосферные вспышки на солнце, солнечные пятна.

Прикладная гидродинамика[править | править исходный текст]

Сюда относятся различные конкретные научно-технические задачи. Среди прочих задач упомянем

Реология[править | править исходный текст]

Реология — раздел гидродинамики, изучающий поведение нелинейных жидкостей, т. е. таких жидкостей, для которых зависимости скорости течения от приложенной силы нелинейна. Примеры нелинейных жидкостей — пасты, гели, стекловидные тела, псевдопластики, вискоэластики. Реология активно используется в материаловедении, в геофизике.

Нерешенные проблемы гидродинамики[править | править исходный текст]

В гидродинамике есть сотни нерешенных задач, в том числе задача о вытекании жидкости из ванны по трубе[1].

См. также[править | править исходный текст]

Литература[править | править исходный текст]

Ссылки[править | править исходный текст]


Примечания[править | править исходный текст]

  1. Бетяев С. К. Гидродинамика: проблемы и парадоксы, УФН, т. 165, 1995, № 3, с. 299–330