Гребной винт

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Гребной винт

Гребно́й винт — наиболее распространённый движитель судов, а также конструктивная основа движителей других типов.

Гребной винт состоит из ступицы и лопастей, установленных на ступице радиально на одинаковом расстоянии друг от друга и повёрнутых на одинаковый угол относительно плоскости вращения, и представляющих собой крылья среднего или малого удлинения. Гребной винт насаживается на гребной вал, приводимый во вращение судовым двигателем. При вращении гребного винта каждая лопасть захватывает массу воды из набегающего потока и отбрасывает её назад, сообщая ей дополнительный момент импульса; сила реакции этой отбрасываемой воды передаёт импульс лопастям, лопасти — гребному валу посредством ступицы, гребной вал — корпусу судна посредством опорного подшипника.

Разновидности винтов[править | править вики-текст]

В зависимости от наличия или отсутствия механизма управления углом атаки лопастей винты называют «с регулируемым шагом» или «с фиксированным шагом» соответственно. Винты с фиксированным шагом применяются на любительских, маломерных судах, а также морских судах, которые редко меняют режим движения во время плавания. Винты с регулируемым шагом применяются на судах с часто меняющимся режимом движения — буксирах, траулерах, многих речных судах.

В зависимости от направления вращения винты бывают правого и левого вращения. Если смотреть с кормы, то винт, вращающийся по часовой стрелке, называется винтом правого вращения, против часовой — соответственно левого. В простейшем случае используется одиночный винт правого вращения; на больших судах для улучшения манёвренности и надёжности применяются два или даже четыре винта противоположного вращения.

Винты с кольцевым крылом вращаются в открытом полом цилиндре (импеллер[уточнить]), такая насадка применяется для дополнительной защиты от попадания посторонних предметов в рабочую область и повышения эффективности работы винта. Часто применяются на судах, ходящих по мелководью.

Суперкавитирующие винты со специальным покрытием и особой формой лопастей предназначены для постоянной работы в условиях кавитации. Применяются на быстроходных судах.

Преимущества и недостатки[править | править вики-текст]

Работает как движитель только при непрерывном или возрастающем темпе вращения, в остальных случаях — как тормоз. Максимально достижимый КПД винта — 75 %; невозможность сделать «идеальный» винт, ввиду постоянного изменения условий его работы.

По сравнению с веслом гребной винт имеет более низкий КПД.[источник?]

По сравнению с гребным колесом у винта выше КПД и меньше масса. Но гребное колесо в случае повреждения может быть легко отремонтировано, винты же чаще всего неремонтопригодны, в случае повреждения их заменяют. Также, гребной винт — наиболее уязвимый по сравнению с другими судовыми движителями и наиболее опасен для морской фауны. Вместе с тем, гребные колеса обеспечивают бо́льшую тягу с места (что удобно для буксиров, а также позволяло им иметь меньшую осадку). Однако при волнении они очень быстро оголяются, что делает их практически непригодными для мореходных кораблей (в XIX веке их использовали на них по большому счёту лишь ввиду отсутствия альтернативы, а также вспомогательной роли парового двигателя на парусно-паровых кораблях тех лет).

История[править | править вики-текст]

Идея употребления гребного винта как движителя была высказана ещё в 1752 году Даниилом Бернулли, затем позднее Джеймс Уатт повторил её. Но практическое осуществление эта идея получила только в 1836 году, когда английский изобретатель Френсис Смит (англ. Francis Pettit Smith) воспользовался гребным винтом для небольшого парохода водоизмещением 6 тонн. Удачные опыты Смита привели к образованию компании, на средства которой был построен винтовой пароход в 237 тонн, названный «Архимед».

Одновременно со Смитом и независимо от него разрабатывал применение гребного винта как движителя Джон Эрикссон (англ. John Ericsson). Он построил винтовой пароход в 70 л. с. «Стоктон», сделал на нем переход в Америку, где его идея была встречена весьма сочувственно, так что уже в начале 40-х годов был спущен первый винтовой фрегат USS Princeton (англ. USS Princeton) с машиной в 400 л.с., дававшей ему ход до 14 узлов.

Первоначальный винт Смита представлял собой часть винтовой поверхности прямоугольного образования, соответствующую одному целому шагу.

Конструкция[править | править вики-текст]

Диаметр винта (диаметр окружности, описываемой концами лопастей при вращении винта) современных винтов колеблется от десятков сантиметров до 5 м.[уточнить]

14-тонный гребной винт советского крейсера «Ворошилов» (серии «Киров») в Музее на Сапун-горе, Севастополь

Скорость вращения гребного винта выгодно выбирать в пределах 200—300 об/мин или ниже — на крупногабаритных судах. Кроме того, при низкой скорости вращения существенно ниже механический износ нагруженных деталей двигателя, что весьма существенно при их больших габаритах и высокой стоимости.

Двухлопастной гребной винт обладает более высоким КПД, чем трёхлопастной, однако при большом дисковом отношении весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых судах получили трёхлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо нагруженным, и на парусно-моторных яхтах, где двигатель играет вспомогательную роль[1]. Четырёх- и пятилопастные винты применяют очень редко, в основном на крупных моторных яхтах для уменьшения шума и вибрации корпуса.

Интерцептор (загнутая исходящая кромка) на гребных винтах способствует увеличению способности винта к «захвату» воды, особенно на лодках с высоко установленным мотором и большими углами ходового дифферента. Интерцептор также обеспечивает дополнительный подъём носа катера в случае установки на линиях угла наклона лопасти. Применение интерцептора на исходящей и внешней кромках лопасти увеличивает шаг. Применение стандартного интерцептора обычно выражается в снижении оборотов на 200–400 об./мин. (это означает, что в случае замены обычного винта на винт с интерцептором потребуется снижение шага на 1–2 дюйма).[2]

История

Первоначальный винт Смита имел форму, изображенную на илл., если взять только один полный оборот. Затем Смит стал делать винты двухлопастные (длина винта равнялась только половине шага, и площадь обеих лопастей составляла целый завиток винтовой поверхности). Потом стали делать винты трёхлопастные и четырёхлопастные, разрезая винтовую поверхность на части, сохраняя из них некоторые и сдвигая их на оси так, чтобы длина гребного винта была значительно менее шага винта, из которого взяты отрезки.

При испытаниях в 1843 году первого английского военного винтового парохода «Ратлер» (водоизм. 800 тонн, машина 335 сил) выяснилось, что наивыгоднейшая длина винта должна составлять такую долю шага, чтобы площадь всех лопастей равнялась только 1/3 целого завитка винтовой поверхности, так что длина двухлопастного винта должна составлять 1/6 шага, трёхлопастного — 1/9 и т. д.

Винты с тремя и четырьмя лопастями стали устраивать, чтобы работа винта совершалась плавнее, и вначале придавали рабочей поверхности лопастей, то есть той, которая отбрасывает воду при переднем ходе, по-прежнему форму отрезков обыкновенной винтовой поверхности. Но оказалось, что такие винты при работе дают в корме сотрясения почти такой же силы, как и винты двухлопастные. Желая устранить эти сотрясения, стали менять как форму рабочей поверхности, так и лопастей. Было предложено множество разных систем гребных винтов, из которых наиболее распространены в практике следующие:

  • винт с прогрессивным шагом;
  • винт Гриффитса;
  • винт Гирша;
  • винт Манжена.

Образование поверхности этих винтов показано на чертежах 11 и 12 (таблица), причём производящая обозначена толстой линией. Устройство этих винтов с надлежащей ясностью может быть объяснено только при помощи чертежей, которые составляются следующим образом: задав элементы винта, то есть его диаметр d (так называется диаметр круга, описываемого крайней точкой лопасти), шаг h, относительную длину kh и число лопастей, а также форму и размер муфты, изображают В. в двух видах сзади и сбоку. Так, фиг. 3 представляет первоначальную форму четырёхлопастных винтов, для которых k = 1/10, то есть длина винта составляет 1/10 шага. Чертим круг диаметра d, и так как длина винта составляет 1/10 шага, то каждая лопасть в проекции на плоскости, перпендикулярной к валу, представится в виде сектора с углом при центре в 36°, муфта и вал — кругами. На боковом виде фиг. 3 (а) вертикально стоящие лопасти изобразятся прямоугольником с основанием = 1/10 h и высотой = d. Чтобы вычертить проекцию горизонтально стоящей лопасти, пересекают поверхность винта рядом цилиндров, каждый из которых пересекает лопасть по винтовой линии; все эти винтовые линии имеют один и тот же шаг h, но разные диаметры, а следовательно, и разные углы наклонения к плоскости вращения. Чтобы построить эти углы, откладывают от О длину О А, равную h/2π, и соединяют точку А с точками а 1, а 2 … углы а 1 АО, а 2 АО… и суть требуемые. Так как для изображения горизонтально стоящей лопасти нужны только малые доли соответственных винтовых линий вблизи точки О, где все они имеют в проекции точку перегиба, в которой касательная составляет с плоскостью вращения углы, равные углу наклонения, то эти части винтовых линий можно с достаточной точностью изобразить прямыми, параллельными Аа 1, Аа 2. Таким образом произошла центральная часть фиг. 3 (а), изображающая боковую проекцию горизонтально стоящей лопасти. Так как лопасть испытывает при вращении винта значительное давление, то, дабы она не изгибалась, ей надо придать надлежащую толщину; на чертеже изображают развернутые сечения лопасти вышеупомянутыми цилиндрами а 1, а 2,…

Пусть ab (см. фигуру) представляет собой развернутое сечение лопасти цилиндром радиуса r; хх есть ось вала. Если винт делает n оборотов в секунду, то линейная скорость вращательного движения элемента ab есть v 1=2n πr и направлена по перпендикуляру к валу; если скорость хода корабля есть v, то абсолютная скорость элемента ab представится диагональю параллелограмма, построенного на v (отложенной по оси хх) и v1, то есть будет V. Если бы скорость корабля v была равна nh, то направление V совпадало бы с направлением ab и переднее ребро лопасти встречало бы воду без удара.

Но оказывается, что за каждый оборот винта корабль подвигается вперед на длину, меньшую шага h, именно только от 9/10h до 8/10h, поэтому, чтобы не происходило удара лопасти о воду при переднем ребре, были предложены винты с прогрессивным шагом, то есть такие, у которых шаг при переднем ребре составляет от 19/10 до 8/10 шага при выходящем ребре, изменяясь постепенно. Нашли также выгодным изменить и форму лопастей, закруглив входящее ребро, и таким образом получился весьма употребительный четырёхлопастный В., изображенный на фиг. 4 (таблицы), который делается иногда и с постоянным шагом. Две лопасти изображены сполна, а другие две (горизонтально стоящие) урезаны. Фиг. 4 (а) представляет тот же В. сбоку; в средней части чертежа изображена в проекции горизонтальная лопасть. Стрелки показывают направление вращения В. при переднем ходе и направление движения корабля.

Гриффитс после долгих опытных изысканий над гребными винтами предложил В., изображенный на фиг. 5 (таблица), с прогрессивным шагом, относительно большего диаметра муфтой и лопастями, имеющими наибольшую ширину посередине; конец лопасти отогнут вперед приблизительно на 1/25 d, так что образующая её рабочей поверхности есть не прямая линия, как у обыкновенного В., а кривая. Работа такого В. оказалась весьма плавной и почти не сопровождается ударами и сотрясениями кормы. Винты Гриффитса были весьма распространены в практике и устанавливались на весьма многих кораблях и судах русского флота. В прилагаемой таблице даются для примера размеры этих винтов.

Название корабля Число винтов Число лопастей у каждого винта Диаметр в футах и дюймах Средний шаг в футах и дюймах Число оборотов в минуту Число индикаторных сил Скорость в узлах
Клиперы
Опричник, Разбойник, Вестник и пр. 1 2 13΄ 10˝ 16΄ 95 1528 12,3
Фрегаты
Минин 1 2 19΄= 5,7912 м 27΄ 64 5290 14,5
Владимир Мономах 2 4 17΄= 5,1816 м 20΄ 86 7200 16
Дмитрий Донской 1 4 20΄ 16˝ 21΄ 10˝ 85 6016 16,2
Адмирал Нахимов 2 4 17΄= 5,1816 м 21΄ 90 8000 16,4
Память Азова 2 4 17΄ 3˝ 23΄ 86 5750 16,2
Корабли
Пётр Великий 2 4 17΄= 5,1816 м 17΄ 6˝ 95 8300 14,5
Император Александр II 2 4 17΄= 5,1816 м 23΄ 84 8500 14,6

Лишь в последнее время на коммерческих судах винты Гриффитса уступают место винтам Гирша, изображенным на фиг. 6. Этот винт тоже с прогрессивным шагом, и кроме того, шаг у переднего ребра при основании лопасти меньше, нежели при её конце, средняя линия лопасти и образующая (линия) её рабочей поверхности суть дуги архимедовой спирали. Фиг. 6 изображает винт Гирша сзади, фиг. 6 (а) — сбоку. Стрелка при первом показывает направление вращения при переднем ходе, стрелка при втором — направление движения корабля. Обыкновенный винт, в особенности четырёхлопастный, весьма сильно задерживает ход корабля под парусами, поэтому на рангоутных военных судах делали подъемные винты. Чтобы уменьшить ширину винтового колодца, Манжен предложил В. с четырьмя лопастями, изображенный на фиг. 7 (таблица). На чертеже В. изображен сзади (а), сбоку (b) и сверху (с). Работа такого винта оказалась не менее выгодной, как и обыкновенного двухлопастного, ширина же его почти вдвое меньше, так что на деревянных судах винт Манжена, если его поставить вертикально, почти скрывался за передним ахтерштевнем. Вместо устройства подъемных винтов Модслей, а затем Бевис предложили винты с поворотными лопастями, так что, когда корабль вступает под паруса, винт ставится вертикально и лопасти поворачиваются параллельно диаметральной плоскости и, будучи даже на железных судах скрыты передним ахтерштевнем, не задерживают хода. На новых французских броненосцах типа «Tonnerre» поставлены винты, напоминающие по форме лопастей, если на них смотреть сзади, винты Гирша; отличие же их состоит в том, что поверхность этих В. образуется прямой, наклонной к оси под углом около 120°. Таким образом, и лопасть винта, составляющая отрезок поверхности, изображенной на фиг. 9 (таблица), уклонена под этим углом назад. Обыкновенно эти винты делаются с постоянным шагом.

Сперва уподобляли винт как бы штопору, который, ввинчиваясь в воду, двигает корабль вперед; ныне объясняют действие винта реакцией воды, причём одни исчисляют, какое сопротивление испытывает рабочая поверхность лопасти при её вращении и, взяв составляющую этого сопротивления по оси вала, получают ту силу, с которой винт толкает корабль; другие же исчисляют, какое количество движения сообщает винт воде в одну секунду, и по этому количеству движения находят движущую силу винта. Выше было упомянуто, что за каждый оборот винта корабль проходит путь, меньший шага; это явление называют скольжением винта. Скольжение обыкновенно выражается в %, и, зная шаг винта h, число его оборотов в секунду n и скорость хода корабля v, найдем скольжение в % по формуле

s=\left[\frac{\left(nh-v\right)}{nh}\right]*100

Обыкновенно s равно от 10 % до 20-25 %. Для определения размеров винта обыкновенно руководствуются данными, полученными из опытов над судами подобного типа и размеров, или же эмпирическими формулами и таблицами, составленными на основании таких испытаний. Но можно приближенно найти эти размеры таким образом: диаметр d винта определяется углублением корабля — винт надо ставить так, чтобы при вертикальном положении лопасти верхний конец её был погружен на 30-50 сант. при среднем углублении корабля. Выбрав диаметр, берут шаг h при выходящей кромке:
h = 1,50 d, если d не более 2 метров.
h = 1,25 d, если d от 2-4 метров.
h = 1,00 d, если d более 4 метров.

Принимая скольжение в 10—20 %, например 15 %, находят число оборотов винта при желаемой скорости корабля v из условия 0,85Nh = 60 х 0,514v, где v есть скорость корабля в узлах (0,514 метра в секунду), h — шаг винта в метрах, N — число оборотов в минуту.

Установка

Гребной винт лучше всего работает, когда его ось расположена горизонтально. У винта, установленного с наклоном и в связи с этим обтекаемого "косым" потоком, коэффициент полезного действия всегда будет ниже; это падение КПД сказывается при угле наклона гребного вала к горизонту больше 10°.

Ось гребного винта на глиссирующем катере расположена сравнительно близко к поверхности воды, поэтому нередки случаи засасывания воздуха к лопастям винта (поверхностная аэрация) или оголения всего винта при ходе на волне. В этих случаях упор винта резко падает, а частота вращения двигателя может превысить максимально допустимую. Для уменьшения влияния аэрации шаг винта делается переменным по радиусу - начиная от сечения лопасти на r = (0,63—0,7) R по направлению к ступице шаг уменьшается на 15~20 %.

Изготовление[править | править вики-текст]

Самые большие гребные винты достигают высоты трехэтажного здания, а их изготовление требует уникальных навыков. Во времена, когда был создан винтовой пароход «Great Britain» на изготовление форм гребного винта уходило до 10 дней. Сегодня благодаря наличию компьютерных технологий роботизированный манипулятор делает это за пару часов. Форма винта вводится в компьютер, далее алмазное сверло на конце манипулятора вырезает из огромных пенопластовых блоков идеальную копию лопасти с точностью до 1 мм. Затем в готовую модель помещают смесь песка и цемента, чтобы получить точный оттиск. После того как бетон остынет, в форму, состоящую из двух половинок, соединяют вместе и заливают расплавленный до 3000 (°F? x=> °C !!!) градусов металл.

Винт должен быть достаточно прочен, чтобы выдержать тысячи тонн давления и не подвергаться коррозии в соленой морской воде. Наиболее распространенными материалами для изготовления гребных винтов являются латунь, бронза, сталь, также специальные сплавы, например сплав куниаль — он имеет прочность стали, но гораздо лучше противостоит коррозии. Куниал может находиться в воде десятилетиями, не ржавея при этом. Для придания сплаву предельной точности к 80 % меди добавляется 5 % никеля, 5 % алюминия и 10 % других металлов; переплавка осуществляется при температуре 3200 (°F? x=> °C !!!) градусов.[3]

В последние годы для этих целей стали применять и пластмассы.[4]

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

При написании этой статьи использовался материал из Энциклопедического словаря Брокгауза и Ефрона (1890—1907).

Примечания[править | править вики-текст]

  1. В последнем случае имеет значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения его сопротивления при плавании под парусами.
  2. Выбор гребного винта // vlboat.ru
  3. д/ф Гигантские гребные винты («Как это делается?», Discovery Channel
  4. Материал для изготовления винта // vlboat.ru