Диофант Александрийский

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Диофант Александрийский
Διόφαντος ὁ Ἀλεξανδρεύς
Diophantus.jpg
Страна:

Шаблон:Флагификация/Древняя Греция

Научная сфера:

теория чисел

Известен как:

«отец алгебры»

Диофа́нт Александри́йский (др.-греч. Διόφαντος ὁ Ἀλεξανδρεύς; лат. Diophantus) — древнегреческий математик, живший предположительно в III веке н. э. Нередко упоминается как «отец алгебры». Автор «Арифметики» — книги, посвящённой решению алгебраических уравнений.

Диофант был первым греческим математиком, который рассматривал дроби наравне с другими числами. В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел. Диофант также одним из первых развивал математические обозначения.

Биография[править | править вики-текст]

Латинский перевод Арифметики (1621)

О подробностях его жизни практически ничего не известно. С одной стороны, Диофант цитирует Гипсикла (II век до н. э.); с другой стороны, о Диофанте пишет Теон Александрийский (около 350 года н. э.), — откуда можно сделать вывод, что его жизнь протекала в границах этого периода. Возможное уточнение времени жизни Диофанта основано на том, что его Арифметика посвящена «достопочтеннейшему Дионисию». Полагают, что этот Дионисий — не кто иной, как епископ Дионисий Александрийский, живший в середине III в. н. э.

В Палатинской антологии содержится эпиграмма-задача:

Прах Диофанта гробница покоит; дивись ей и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком.
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругой он обручился.
С нею, пять лет проведя, сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей.

(Пер. С. Н. Боброва)

Она эквивалентна решению следующего уравнения:

x = \frac{x}{6} + \frac{x}{12} + \frac{x}{7} + 5 + \frac{x}{2} + 4

Это уравнение даёт x=84, то есть возраст Диофанта получается равным 84 годам. Однако достоверность сведений не может быть подтверждена.

В честь Диофанта назван кратер на Луне.

Арифметика Диофанта[править | править вики-текст]

Основное произведение Диофанта — Арифметика в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

Лист из Арифметики (рукопись XIV века). В верхней строке записано уравнение: x^3 \cdot 8 - x^2 \cdot 16 = x^3.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» (ἀριθμός) и обозначает буквой ς, квадрат неизвестной — символом \delta ^ \nu (сокращение от δύναμις — «степень»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней. Знака сложения у Диофанта нет: он просто пишет рядом положительные члены, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы Ψ. Знак равенства обозначается двумя буквами ἴσ (сокращение от ἴσος — «равный»). Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться «алгеброй и алмукабалой». Введено правило знаков: минус на минус даёт плюс; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Бо́льшая часть труда — это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики — нахождение положительных рациональных решений неопределённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков.

Сначала Диофант исследует системы уравнений 2-го порядка от 2 неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней.

В X веке Арифметика была переведена на арабский язык, после чего математики стран ислама (Абу Камил и др.) продолжили некоторые исследования Диофанта. В Европе интерес к Арифметике возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из него в своей Алгебре (1572). В 1621 году появился классический, подробно прокомментированный латинский перевод Арифметики, выполненный Баше де Мезириаком.

Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма; впрочем, в Новое время неопределённые уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант. Когда Пьер Ферма читал «Арифметику» Диофанта, изданную Баше де Мезириаком, он пришёл к выводу, что одно из уравнений, похожих на рассмотренные Диофантом, не имеет решений в целых числах, и заметил на полях, что он нашёл «поистине чудесное доказательство этой теоремы… однако поля книги слишком узки, чтобы его привести». Сейчас это утверждение известно как Великая теорема Ферма.

В XX веке под именем Диофанта обнаружен арабский текст еще 4 книг Арифметики. И. Г. Башмакова и Е. И. Славутин, проанализировав этот текст, выдвинули гипотезу, что их автором был не Диофант, а хорошо разбиравшийся в методах Диофанта комментатор, вероятнее всего — Гипатия.

Другие сочинения Диофанта[править | править вики-текст]

Трактат Диофанта О многоугольных числах (Περὶ πολυγώνων ἀριθμῶν) сохранился не полностью; в сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем.

Из сочинений Диофанта Об измерении поверхностей (ἐπιπεδομετρικά) и Об умножении (Περὶ πολλαπλασιασμοῦ) также сохранились лишь отрывки.

Книга Диофанта Поризмы известна только по нескольким теоремам, используемым в Арифметике.

Литература[править | править вики-текст]

Сочинения

О нём

  • Башмакова И. Г. Диофант и Ферма (к истории метода касательных и экстремумов). Историко-математические исследования, 17, 1967, с. 185—204.
  • Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972. 68 стр. 40000 экз.
    • (Репринт М.: ЛКИ, 2007)
  • Башмакова И. Г. Арифметика алгебраических кривых (от Диофанта до Пуанкаре). «Историко-математические исследования», 20, 1975, с. 104—124.
  • Башмакова И. Г., Славутин Е. И., Розенфельд Б. А. Арабская версия «Арифметики» Диофанта. Историко-математические исследования, 23, 1978, с. 192—225.
  • Башмакова И. Г., Славутин Е. И. История диофантова анализа от Диофанта до Ферма. М.: Наука, 1984.
  • История математики с древнейших времён до начала XIX столетия. Под ред. А. П. Юшкевича. том I: С древнейших времён до начала Нового времени, М., Наука, 1970.
  • Славутин Е. И. Алгебра Диофанта и её истоки. Историко-математические исследования, 20, 1975, с. 63-103.
  • Щетников А. И. Можно ли назвать книгу Диофанта Александрийского «О многоугольных числах» чисто алгебраической? Историко-математические исследования, 8(43), 2003, с. 267—277.
  • Christianidis J. The way of Diophantus: Some clarifications on Diophantus’ method of solution. Historia Mathematica, 34, 2007, p. 289—305.
  • Heath Th. L. Diophantus of Alexandria, A Study in the History of Greek Algebra. Cambridge, 1910 (Repr. NY, 1964).
  • Knorr W. R. Arithmktikê stoicheiôsis: On Diophantus and Hero of Alexandria. Historia Mathematica, 20, 1993, p. 180—192.

Ссылки[править | править вики-текст]

См. также[править | править вики-текст]