Дискретное пространство

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, в котором все точки изолированы друг от друга в некотором смысле.

Определения[править | править вики-текст]

\varrho(x,y) = \left\{
\begin{matrix}
1, & x \not=y \\
0, & x = y
\end{matrix}
\right., \quad x,y\in X.

Тогда \varrho называется дискре́тной ме́трикой, а всё пространство называется дискре́тным метри́ческим простра́нством.

Замечание[править | править вики-текст]

Топология, индуцированная дискретной метрикой, является дискретной. Обратное — неверно. Метрика, не являющаяся дискретной, может порождать дискретную топологию.

Примеры[править | править вики-текст]

  • Пусть X = \{ 1,\ldots, n\}, где n \in \mathbb{N}, и \varrho — дискретная метрика на X. Тогда (X,\varrho) — дискретное метрическое, а следовательно и топологическое пространство.
  • Пусть X = \{1/n\}_{n \in \mathbb{N}}, и \varrho(x,y) = |x-y|. Данная метрика не дискретна, однако она порождает дискретную топологию.

Свойства[править | править вики-текст]

  • Топологическое пространство является дискретным тогда и только тогда, когда любое его подмножество, содержащее одну точку, открыто.
  • Множества, содержащие любую одну точку дискретного топологического пространства, являют собой базу дискретной топологии.
  • Дискретное топологическое пространство компактно тогда и только тогда, когда оно конечно.
  • Дискретное метрическое пространство ограничено.
  • Любые два дискретных топологических пространства, имеющие одинаковую мощность, гомеоморфны.
  • Любая функция, определённая на дискретном топологическом пространстве, непрерывна.
  • Дискретное подмножество евклидова пространства не более чем счётно. Обратное, вообще говоря, неверно.

См. также[править | править вики-текст]