Закон Хаббла

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
График из оригинальной работы Хаббла 1929 года

Зако́н Ха́ббла (закон всеобщего разбегания галактик) — эмпирический закон, связывающий красное смещение галактик и расстояние до них линейным образом[1]:

 cz=H_0 D,

где z — красное смещение галактики, D — расстояние до неё, H0 — коэффициент пропорциональности, называемый постоянной Хаббла. При малом значении z выполняется приближённое равенство cz=Vr, где Vr — скорость галактики вдоль луча зрения наблюдателя, c — скорость света. В этом случае закон принимает классический вид: D \propto V_r.

С помощью этого закона можно рассчитать так называемый Хаббловский возраст Вселенной:

t_H = \frac{r}{V} = \frac{1}{H_0}.

Этот возраст является характерным временем расширения Вселенной на данный момент и с точностью до множителя 2 соответствует возрасту Вселенной, рассчитываемому по стандартной космологической модели Фридмана.

С другой стороны, если подставить в формулу красного смещения   z = H_0t  время, равное одному периоду колебания фотона  T = \frac{1}{\nu}, то получим, что постоянная Хаббла — это величина, на которую уменьшается частота фотона за один период колебания вне зависимости от длины волны, и чтобы определить насколько уменьшилась частота фотона, надо постоянную Хаббла умножить на число совершённых колебаний:   \nu_n = nH_0.

История открытия[править | править вики-текст]

В 1913—1914 годах американский астроном Весто Слайфер установил, что Туманность Андромеды и ещё более десятка небесных объектов движутся относительно Солнечной системы с огромными скоростями (порядка 1000 км/с). Это означало, что все они находится за пределами Галактики (ранее многие астрономы полагали, что туманности представляют собой формирующиеся в нашей Галактике планетные системы). Другой важный результат: все исследованные Слайфером туманности, кроме трёх, удалялись от Солнечной системы. В 1917—1922 годах Слайфер получил дополнительные данные, подтвердившие, что скорость почти всех внегалактических туманностей направлена прочь от Солнца. Артур Эддингтон на основе обсуждавшихся в те годы космологических моделей Общей теории относительности предположил, что этот факт отражает общий природный закон: Вселенная расширяется, и чем дальше от нас астрономический объект, тем больше его относительная скорость.

Вид закона для расширения Вселенной был установлен экспериментально для галактик бельгийским учёным Жоржем Леметром в 1927 году[2], а позже — знаменитым Э. Хабблом в 1929 году с помощью 100-дюймового (254 см) телескопа, который разрешает ближайшие галактики на звезды. Среди них были цефеиды, используя зависимость «период-светимость» которых, Хаббл измерил расстояние до них, а также красное смещение галактик, позволяющее определить их радиальную скорость.

Полученный Хабблом коэффициент пропорциональности составлял около 500 км/с на мегапарсек. Современное значение составляет 67,80 ± 0,77 км/с на мегапарсек[3]. Столь существенную разницу обеспечивают два фактора: отсутствие поправки нуль-пункта зависимости «период-светимость» на поглощение (которое тогда ещё не было открыто) и существенный вклад собственных скоростей в общую скорость для местной группы галактик[4].

Теоретическая интерпретация[править | править вики-текст]

С точки зрения классической механики, закон Хаббла можно наглядно объяснить следующим образом. Когда-то давно Вселенная образовалась в результате Большого взрыва. В момент взрыва различные частицы материи (осколки) получили различные скорости. Те из них, которые получили бо́льшие скорости, соответственно успели к настоящему моменту улететь дальше, чем те, которые получили меньшие скорости. Если провести численный расчёт, то окажется, что зависимость расстояния от скорости оказывается линейной. Кроме того, получается, что эта зависимость одна и та же для всех точек пространства, то есть, по наблюдениям за разлетающимися осколками нельзя найти точку взрыва: с точки зрения каждого осколка, именно он находится в центре. Однако, несмотря на такую наглядность, следует помнить, что расширение Вселенной должно описываться не классической механикой, а общей теорией относительности.

Космология
Ilc 9yr moll4096.png
Изучаемые объекты и процессы
Наблюдаемые процессы
Теоретические изыскания

Первое замечание касается того, учитывается ли при наблюдениях тот факт, что из-за того, что свет идёт от галактик миллионы лет, мы наблюдаем их в прошлом. В результате, поскольку они удаляются от нас, в настоящий момент они должны находиться уже дальше. Вопрос: для какого из двух расстояний определена зависимость Хаббла? Ответ: до середины XX века это не имело значения. Из графика Хаббла видно, что наибольшие скорости галактик, рассмотренных Хабблом, составили до 1000 км/с. В принципе это большая скорость, но за время движения света от них до Земли они всё равно успели сдвинуться лишь на незначительный процент общего расстояния.

Второе замечание заключается в том, что расширение Вселенной не является простым разлётом галактик в пустом пространстве. Оно заключается в динамическом изменении самого пространства. Непонимание этого факта часто заставляет делать неверные заключения авторов даже серьёзной литературы. Например, часто говорят, что скорость убегания галактик не должна превышать скорость света и потому на тех расстояниях, где это должно наблюдаться, должны наблюдаться и отклонения от закона Хаббла. Это не так: согласно общей теории относительности, должны существовать и наблюдаться галактики, убегающие быстрее света[5].

За несколько лет до экспериментального открытия закона Хаббла Александр Фридман вывел теоретически решения уравнения Эйнштейна для всей Вселенной, и в результате было получено, что если распределение вещества в ней в среднем равномерно, то она должна или сжиматься, или расширяться, причём в последнем случае должен наблюдаться линейный закон между расстоянием и скоростью убегания. Эта особенность решений Фридмана была сразу же отождествлена с явлением, открытым Хабблом.

В соответствии с этой (общепринятой) моделью космологическое красное смещение нельзя интерпретировать как Эффект Доплера, так как получаемая из наблюдаемого z по формулам этого эффекта скорость не соответствует (лишь приближённо равна) никакой скорости в смысле изменения космологического расстояния между галактиками. Галактики неподвижны (за исключением пекулярных собственных скоростей), а расширяется пространство, что и вызывает расширение волнового пакета. (См. в статье Космологическое красное смещение). Соотношение

\displaystyle cz \approx H_0 D

является приближённым, в то время как равенство

V=\frac{dD}{dt} = H_0 D,

где D — расстояние в данный момент, есть точное равенство, то есть красное смещение линейно связано с расстоянием только приближённо для близких галактик, а скорость их удаления линейно возрастает с расстоянием точно. Таким образом, в последней формуле скорость V не соответствует скорости, рассчитываемой по эффекту Допплера.

Оценка постоянной Хаббла и её физический смысл[править | править вики-текст]

В процессе расширения, если оно происходит равномерно, постоянная Хаббла должна уменьшаться, и индекс «0» при её обозначении указывает на то, что величина Н0 относится к современной эпохе. Величина, обратная постоянной Хаббла, должна быть в таком случае равна времени, прошедшему с момента начала расширения, то есть возрасту Вселенной.

Значение Н0 определяется по наблюдениям галактик, расстояния до которых измерены без помощи красного смещения (прежде всего, по ярчайшим звёздам или цефеидам). Большинство независимых оценок Н0 дают для этого параметра значение 70—80 км/с на мегапарсек. Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью 7000—8000 км/с. В настоящее время (2014) наиболее надёжной (хотя и модельно зависимой) считается оценка Н0 = (67,80 ± 0,77) (км/c)/Мпк[3].

Проблема оценки Н0 осложняется тем, что, помимо космологических скоростей, обусловленных расширением Вселенной, галактики ещё обладают собственными (пекулярными) скоростями, которые могут составлять несколько сотен км/с (для членов массивных скоплений галактик — более 1000 км/с). Это приводит к тому, что закон Хаббла плохо выполняется или совсем не выполняется для объектов, находящихся на расстоянии ближе 10—15 млн св. лет, то есть как раз для тех галактик, расстояния до которых наиболее надёжно определяются без красного смещения.

Закон Хаббла плохо выполняется и для галактик на очень больших расстояниях (в миллиарды световых лет), которым соответствует величина z > 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение.

Возможная нелинейность закона[править | править вики-текст]

В наше время наблюдениями, говорящими в пользу существования тёмной энергии, были, по-видимому, обнаружены отклонения от линейного закона Хаббла (как связи наблюдаемого красного смещения с расстоянием). Было обнаружено, что, по-видимому, наша Вселенная расширяется с ускорением.[6] Этот факт не отменяет закона Хаббла, если его понимать как зависимость от расстояния в данный конкретный момент времени, то есть если учесть, что далёкие объекты мы наблюдаем в прошлом.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Adam G. Riess, Lucas Macri, Stefano Casertano, Megan Sosey, Hubert Lampeitl, Henry C. Ferguson, Alexei V. Filippenko, Saurabh W. Jha, Weidong Li, Ryan Chornock, and Devdeep Sarkar. A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder.
  2. Edwin Hubble in translation trouble : Nature News
  3. 1 2 P. A. R. Ade et al. (Planck Collaboration) (22 March 2013). «Planck 2013 results. I. Overview of products and scientific results». Astronomy and Astrophysics 1303: 5062. DOI:10.1051/0004-6361/201321529. Bibcode2013arXiv1303.5062P.
  4. Ю. Н. Ефремов. Постоянная Хаббла. Архивировано из первоисточника 11 августа 2011.
  5. Попов С. Б., кандидат физико-математических наук, Топоренский А. В., кандидат физико-математических наук. За горизонтом вселенских событий. Архивировано из первоисточника 24 августа 2011.
  6. K. Nakamura et al., Review of Particle Properties J. Phys. G 37, 075021 (2010): K.A. Olive, J.A.Peacock. Chapter 19. Big-Bang cosmology.

Ссылки[править | править вики-текст]