Закон сохранения электрического заряда

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

q_1+q_2+q_3+......+ q_n = const

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Закон сохранения заряда и калибровочная инвариантность[править | править вики-текст]

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
Трансляции времени Однородность
времени
…энергии
C, P, CP и T-симметрии Изотропность
времени
…чётности
Трансляции пространства Однородность
пространства
…импульса
Вращения пространства Изотропность
пространства
…момента
импульса
Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функцией\phi(x)=|\phi(x)|e^{i \psi (x)}, где x — пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы \psi, которую можно считать угловой координатой в некотором фиктивном двумерном «зарядовом пространстве». Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа \phi'=e^{i \alpha Q}\phi, где Q — заряд частицы, описываемой полем \phi, а \alpha — произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U(1).[3][4]

Закон сохранения заряда в интегральной форме[править | править вики-текст]

Вспомним, что плотность потока электрического заряда есть просто плотность тока. Тот факт, что изменение заряда в объёме равно полному току через поверхность, можно записать в математической форме:

\frac{\partial}{\partial t}\int\limits_{\Omega}  \rho dV = - \oint\limits_{\partial \Omega} \vec{j}\cdot d\vec{S}.

Здесь \Omega — некоторая произвольная область в трёхмерном пространстве, \partial \Omega — граница этой области, \rho — плотность заряда, \vec{j} — плотность тока (плотность потока электрического заряда) через границу.

Закон сохранения заряда в дифференциальной форме[править | править вики-текст]

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

\frac{\partial \rho}{\partial t}+\mbox{div} \vec{j}=0.

Закон сохранения заряда в электронике[править | править вики-текст]

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Экспериментальная проверка[править | править вики-текст]

Наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда не наблюдались.[5] Лучшее экспериментальное ограничение на вероятность нарушения закона сохранения электрического заряда получено из поиска фотона с энергией mec2/2 ≈ 255 кэВ, возникающего в гипотетическом распаде электрона на нейтрино и фотон:

  e → νγ   время жизни больше 4,6·1026 лет (90 % CL),[6]

однако существуют теоретические аргументы в пользу того, что такой однофотонный распад не может происходить даже в случае, если заряд не сохраняется.[7] Другой необычный несохраняющий заряд процесс — спонтанное превращение электрона в позитрон[8] и исчезновение заряда (переход в дополнительные измерения, туннелирование с браны и т. п.). Наилучшие экспериментальные ограничения на исчезновение электрона вместе с электрическим зарядом и на бета-распад нейтрона без эмиссии электрона:

  e → любые частицы время жизни больше 6,4·1024 лет (68 % CL)[9]
n → pνν относительная вероятность несохраняющего заряд распада менее 8·10−27 (68 % CL) при бета-распаде нейтрона[10]


Примечания[править | править вики-текст]

  1. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-ое изд., М., ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Разд. VII «Основы ядерной физики и физики элементарных частиц», Гл. 4 «Элементарные частицы», п. 3 «Гравитация. Квантовая электродинамика.», с. 952;
  2. Ландау Л. Д., Лифшиц Е. М. «Теоретическая физика», учебн. пособ. для вузов, в 10 т. / т. 4, «Квантовая электродинамика», 4-е изд., исправл., М., «Физматлит», 2001, 720 с., тир. 2000 экз., ISBN 5-9221-0058-0 (т. 4), гл. 5 «Излучение», п. 43 «Оператор электромагнитного взаимодействия», с. 187—190.
  3. Окунь Л. Б. Лептоны и кварки, изд 3-е, стереотипное, М.: Едиториал УРСС, 2005, 352 с., ISBN 5-354-01084-5, гл. 19 Калибровочная инвариантность. Глобальная абелева симметрия U(1)., с. 179
  4. Яворский Б. М. Справочник по физике для инженеров и студентов вузов. / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-е изд. перераб. и испр., М., ООО «Издательство Оникс», ООО «Издательство Мир и Образование», 2006, 1056 стр., ил., ISBN 5-488-00330-4 (ООО «Издательсто Оникс»), ISBN 5-94666-260-0 (Издательство «Мир и Образование»), ISBN 985-13-5975-0 (ООО «Харвест»), Раздел VII. Основы ядерной физики и физики элементарных частиц. Глава 4. «Элементарные частицы» п. 1 «Принципы теории» cтр. 912—925.
  5. J. Beringer et al. (2012). «Tests of Conservation Laws». Phys. Rev. D 86: 010001.
  6. H.O. Back et al. (2002). «Search for electron decay mode e → γ + ν with prototype of Borexino detector». Physics Letters B 525 (1-2): 29–40. DOI:10.1016/S0370-2693(01)01440-X. Bibcode:2002PhLB..525...29B.
  7. L.B. Okun (1989). «Comments on Testing Charge Conservation and Pauli Exclusion Principle». Comments on Nuclear and Particle Physics 19 (3): 99–116.
  8. R.N. Mohapatra (1987). «Possible Nonconservation of Electric Charge». Physical Review Letters 59 (14): 1510–1512. DOI:10.1103/PhysRevLett.59.1510. Bibcode:1987PhRvL..59.1510M.
  9. P. Belli et al. (1999). «Charge non-conservation restrictions from the nuclear levels excitation of 129Xe induced by the electron's decay on the atomic shell». Physics Letters B 465 (1-4): 315–322. DOI:10.1016/S0370-2693(99)01091-6. Bibcode:1999PhLB..465..315B..
  10. Norman E.B., Bahcall J.N., Goldhaber M. (1996). «Improved limit on charge conservation derived from 71Ga solar neutrino experiments». Physical Review D53 (7): 4086–4088. DOI:10.1103/PhysRevD.53.4086. Bibcode:1996PhRvD..53.4086N.