Индуктивность

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Индуктивность
L
Размерность

L2MT−2I−2

Единицы измерения
СИ

Гн

СГС

см

 Просмотр этого шаблона  Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм
См. также: Портал:Физика
Индуктивность микрополосковой линии является распределенной и характеризуется значением индуктивности на единицу длины.

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур[2][3][4].

В формуле

\displaystyle \Phi = LI

\displaystyle \Phi — магнитный поток, I — ток в контуре, L — индуктивность.

  • Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведённое выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:

\mathcal{E}_{i}=-\frac{d\Phi }{dt}=-L\frac{dI}{dt}.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:

W = \frac{LI^2}{2}.

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности[4]. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников[5].

Для имитации индуктивности, т. е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются[6] и устройства, не основанные на электромагнитной индукции (см. Гиратор); такому элементу можно приписать определённую эффективную индуктивность, используемую в расчётах полностью (хотя вообще говоря с определёнными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.

Обозначение и единицы измерения[править | править исходный текст]

В системе единиц СИ индуктивность измеряется в генри[7], сокращённо Гн. Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.

В вариантах системы СГС — системе СГСМ и в гауссовой системе индуктивность измеряется в сантиметрах (1 Гн = 109 см; 1 см = 1 нГн)[4]; для сантиметров в качестве единиц индуктивности применяется также название абгенри. В системе СГСЭ единицу измерения индуктивности либо оставляют безымянной, либо иногда называют статгенри (1 статгенри ≈ 8,987552·1011 генри, коэффициент перевода численно равен 10−9 от квадрата скорости света, выраженной в см/с).

Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz)[8][9]. Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry)[10]. Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года[11].

Теоретическое обоснование[править | править исходный текст]

Если в проводящем контуре течёт ток, то ток создаёт магнитное поле[4].

Будем здесь вести рассмотрение в квазистатическом приближении, подразумевая, что переменные электрические поля не настолько сильны и быстры, чтобы ими нельзя было пренебречь в смысле порождения ими магнитного поля.

Ток считаем одинаковым по всей длине контура (пренебрегая ёмкостью проводника, которая позволяет накапливать заряды в разных его участках, что вызвало бы неодинаковость тока вдоль проводника и заметно усложнило бы картину).

По закону Био — Савара величина вектора магнитной индукции, создаваемой некоторым элементарным (в смысле геометрической малости участка проводника, рассматриваемого как элементарный источник магнитного поля) током в каждой точке пространства пропорциональна этому току. Суммируя поля, создаваемые каждым элементарным участком, приходим к тому, что и магнитное поле (вектор магнитной индукции), создаваемое всем проводником также пропорционально порождающему току.

Рассуждение выше верно для вакуума. В случае присутствия магнитной среды[12] (магнетика) с заметной (или даже большой) магнитной восприимчивостью вектор магнитной индукции (который и входит в выражение для магнитного потока) будет заметно (или даже во много раз) отличаться от того, каким бы он был в отсутствие магнетика (в вакууме). Мы ограничимся здесь линейным приближением, тогда вектор магнитной индукции, хотя, возможно, возросший (или уменьшившийся) в заметное количество раз по сравнению с отсутствием магнетика при том же контуре с током, тем не менее остаётся пропорциональным порождающему его току.

Тогда магнитный поток, то есть поток поля вектора магнитной индукции:

\Phi = \int\limits_S \mathbf B\cdot \mathbf{dS}

через любую конкретную фиксированную поверхность S (в частности и через интересующую нас поверхность, краем которой является наш контур с током) будет пропорционален току, так как пропорционально току B всюду под интегралом.

Заметим, что поверхность, краем которой является контур, может быть достаточно сложна, если сложен сам контур. Уже для контура в виде просто многовитковой катушки такая поверхность оказывается достаточно сложной. На практике это приводит к использованию некоторых упрощающих представлений, позволяющих легче представить такую поверхность и приближённо рассчитать поток через неё (а также в связи с этим вводятся некоторые дополнительные специальные понятия, подробно описанные в отдельном параграфе ниже). Однако здесь, при чисто теоретическом рассмотрении нет необходимости во введении каких-то дополнительных упрощающих представлений, достаточно просто заметить, что как бы ни был сложен контур, в данном параграфе мы имеем в виду «полный поток» — то есть поток через всю сложную (как бы многолистковую) поверхность, натянутую на все витки катушки (если речь идет о катушке), то есть о том, что называется потокосцеплением. Но поскольку нам здесь не надо конкретно рассчитывать его, а нужно только знать, что он пропорционален току, нам не слишком интересен конкретный вид поверхности, поток через которую нас интересует (ведь свойство пропорциональности току сохраняется для любой).

Итак, мы обосновали:

\Phi\ ~\ I,

этого достаточно, чтобы утверждать, введя обозначение L для коэффициента пропорциональности, что

\Phi = LI.

В заключение теоретического обоснования покажем, что рассуждение корректно в том смысле, что магнитный поток не зависит от конкретной формы поверхности, натянутой на контур. (Действительно, даже на самый простой контур может быть натянута — в том смысле, что контур должен быть её краем — не единственная поверхность, а разные, например, начав с двух совпадающих поверхностей, затем одну поверхность можно немного прогнуть, и она перестанет совпадать со второй). Поэтому надо показать, что магнитный поток одинаков для любых поверхностей, натянутых на один и тот же контур.

Но это действительно так: возьмём две такие поверхности. Вместе они будут составлять одну замкнутую поверхность. А мы знаем (из закона Гаусса для магнитного поля), что магнитный поток через любую замкнутую поверхность равен нулю. Это (с учетом знаков) означает, что поток через одну поверхность и другую поверхность — равны. Что доказывает корректность определения.

Свойства индуктивности[править | править исходный текст]

  • Индуктивность[13] всегда положительна.
  • Индуктивность зависит только от геометрических размеров контура и магнитных свойств среды (сердечника).[14]

Индуктивность одновиткового контура и индуктивность катушки[править | править исходный текст]

Величина магнитного потока, пронизывающего одновитковый контур, связана с величиной тока следующим образом[4]:

\displaystyle \Phi = LI

где L — индуктивность витка. В случае катушки, состоящей из N витков предыдущее выражение модифицируется к виду:

\displaystyle \Psi = LI

где \Psi =\sum\limits_{i=1}^{N}{\Phi _{i}} — сумма магнитных потоков через все витки (это так называемый полный поток, называемый в электротехнике потокосцеплением, именно он фигурирует в качестве магнитного потока вообще в случае для катушки в общем определении индуктивности и в теоретическом рассмотрении выше; однако для упрощения и удобства для многовитковых катушек в электротехнике пользуются отдельным понятием и отдельным обозначением), а L — уже индуктивность многовитковой катушки. \Psi называют потокосцеплением или полным магнитным потоком[15]. Коэффициент пропорциональности L иначе называется коэффициентом самоиндукции контура или просто индуктивностью[4].

Если поток, пронизывающий каждый из витков одинаков (что довольно часто можно считать верным для катушки в более или менее хорошем приближении), то \Psi=N\Phi. Соответственно, L_{N}=L_{1}N^2 (суммарный магнитный поток через каждый виток увеличивается в N раз — поскольку его создают теперь N единичных витков, и потокосцепление ещё в N раз, так как это поток через N единичных витков). Но в реальных катушках магнитные поля в центре и на краях отличаются, поэтому используются более сложные формулы.

Индуктивность соленоида[править | править исходный текст]

Катушка в форме соленоида (конечной длины).

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока (или магнитная индукция) B, которая выражается в системе СИ в тесла [Тл], внутри катушки является фактически постоянной и (приближённо) равна

\displaystyle B = \mu_0 Ni/l,

где \mu_0 магнитная постоянная, N − число витков, i − ток, записанный в амперах [А] и l − длина катушки в метрах [м]. Пренебрегая краевыми эффектами на концах соленоида, получим[16], что потокосцепление через катушку равно плотности потока B [Тл], умноженному на площадь поперечного сечения S2] и число витков N:

\displaystyle \Psi = \mu_0N^2iS/l,

Отсюда следует формула для индуктивности соленоида (без сердечника):

\displaystyle L = \mu_0N^2S/l.

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель \mu — относительную магнитную проницаемость[17] сердечника:

\displaystyle L = \mu_0\mu N^2S/l.

В случае, когда \mu >> 1, можно (следует) под S понимать площадь сечения сердечника [м2] и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)[править | править исходный текст]

Тороидальная катушка

Для тороидальной катушки, намотанной на сердечнике из материала с большой магнитной проницаемостью, можно приближённо пользоваться формулой для бесконечного прямого соленоида (см. выше):


L = N^2 \cdot \frac{\mu_0\mu S}{2 \pi r},\,

где 2 \pi r - оценка длины соленоида (r - большой радиус тора).

Лучшее приближение дает формула


L = N^2 \cdot \frac{\mu_0\mu h}{2 \pi} \cdot \ln \frac{R}{r},\,

где предполагается сердечник прямоугольного сечения с наружным радиусом R и внутренним радиусом r, высотой h.

Индуктивность длинного прямого проводника[править | править исходный текст]

Для длинного прямого (или квазилинейного) провода кругового сечения индуктивность выражается приближённой формулой[18]:

L = \frac{\mu_0}{2\pi} l 
\Big( \mu_e \mathrm{ln}\frac{l}{r} + \frac{1}{4}\mu_i
\Big),

где \mu_0 магнитная постоянная, \mu_e - относительная магнитная проницаемость внешней среды (которой заполнено пространство (для вакуума \mu_e = 1), \mu_i - относительная магнитная проницаемость материала проводника, l - длина провода, r << l - радиус его сечения.

Таблица индуктивностей[править | править исходный текст]

Символ \mu_0 обозначает магнитную постоянную (4π×10−7 Гн/м). В высокочастотном случае ток течёт в поверхности проводников (скин-эффект) и в зависимости от вида проводников иногда нужно различать индуктивность высокой и низкои частоты. Для этого служит постоянная Y: Y = 0 когда ток равномерно распределён по поверхности провода (скин-эффект), Y = 1/4 когда ток равномерно распределён по поперечному сечению провода. В случае скин-эффекта нужно учитывать, что при маленьких расстояниях между проводниками в поверхностях текут дополнительные вихревые токи (эффект экранирования), и выражения содержащие Y становятся неточными.

Коэффициенты самоиндукции некоторых замкнутых контуров
Вид Индуктивность Комментарий
соленоид
с тонкой обмоткой[19]
 \frac{\mu_0r^{2}N^{2}}{3l}\left[ -8w + 4\frac{\sqrt{1+m}}{m}\left( K\left( \sqrt{\frac{m}{1+m}}     \right)
-\left( 1-m\right) E\left( \sqrt{ \frac{m}{1+m}}    \right) \right)
\right]

=\frac{\mu_0r^2N^2\pi}{l}\left[ 1-\frac{8w}{3\pi }+\sum_{n=1}^{\infty }
\frac {\left( 2n\right)!^2} {n!^4 \left(n+1\right)\left(2n-1\right)2^{2n}}
\left( -1\right) ^{n+1}w^{2n}\right]

 =\frac {\mu_0r^2N^2\pi}{l}\left( 1 - \frac{8w}{3\pi} + \frac{w^2}{2} - \frac{w^4}{4} + \frac{5w^6}{16} - \frac{35w^8}{64} + ... \right)
для w << 1
= \mu_0rN^2 \left[ \left( 1 + \frac{1}{32w^2} + O\left(\frac{1}{w^4}\right) \right) \ln(8w) - 1/2 + \frac{1}{128w^2} + O\left(\frac{1}{w^4}\right) \right] для w >> 1

N: Число витков
r: Радиус
l: Длина
w = r/l
m = 4w2
E,K: Эллиптический интеграл
Коаксиальный кабель,
высокая частота
 \frac {\mu_0 l}{2\pi} \ln\left(\frac {a_1}{a}\right) a1: Радиус
a: Радиус
l: Длина
единичный
круглый виток[18][20]
\mu_0r \cdot \left( \ln\left(\frac {8 r}{a}\right) - 2 + Y + O\left(a^2/r^2\right)\right) r: Радиус витка
a: Радиус проволоки
прямоугольник[18][21][22] \frac {\mu_0}{\pi}\left(b\ln\left(\frac {2 b}{a}\right) + d\ln\left(\frac {2d}{a}\right) - \left(b+d\right)\left(2-Y\right)+2\sqrt{b^2+d^2}\right)

\;\; -\frac {\mu_0}{\pi}\left(b\cdot\operatorname{arsinh}\left(\frac {b}{d}\right)+d\cdot\operatorname{arsinh}\left(\frac {d}{b}\right) + O\left(a\right)\right)

b, d: Длины краёв
d >> a, b >> a
a: Радиус проволоки
Две параллельные
проволоки
 \frac {\mu_0 l}{\pi} \left( \ln\left(\frac {d}{a}\right) + Y \right) a: Радиус проволоки
d: Растояние, d ≥ 2a
l: Длина пары
Две параллельные
проволоки, высокая
частота
 \frac{\mu_0 l}{\pi }\operatorname{arcosh}\left( \frac{d}{2a}\right) = \frac{\mu_0 l}{\pi }\ln \left( \frac{d}{2a}+\sqrt{\frac{d^{2}}{4a^{2}}-1}\right) a: Радиус проволоки
d: Растояние, d ≥ 2a
l: Длина пары
Проволока параллельна
идеально проводящей
стене
 \frac {\mu_0 l}{2\pi} \left( \ln\left(\frac {2d}{a}\right) + Y \right) a: Радиус проволоки
d: Растояние, d ≥ a
l: Длина
Проволока параллельна
стене,
высокая частота
 \frac{\mu_0 l}{2\pi }\operatorname{arcosh}\left( \frac{d}{a}\right)=\frac{\mu_0 l}{2\pi }\ln \left(\frac{d}{a}+\sqrt{\frac{d^{2}}{a^{2}}-1}\right) a: Радиус проволоки
d: Растояние, d ≥ a
l: Длина

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

  1. Если контур многовитковый (катушка) или вообще сложной формы, поверхность, краем которой он будет являться, может иметь достаточно сложную форму. Это никак не сказывается на большей части общих утверждений, однако для упрощения конкретного понимания ситуации и количественных оценок в случае катушки обычно приближенно рассматривают эту поверхность как совокупность («стопку») отдельных листков, каждый из которых привязан к отдельному единичному витку, а общий поток через такую поверхность рассматривается приближенно как сумма потоков через все такие листки.
  2. Касаткин А. С. Основы электротехники. М:Высшая школа, 1986.
  3. Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. М:Высшая школа, 1978.
  4. 1 2 3 4 5 6 7 8 Индуктивность // БСЭ
  5. Правда, этот случай в принципе выходит за рамки квазистационарного приближения, позволяющего рассматривать элементы схемы как независимые, то есть понятие индуктивности отдельного элемента цепи начинает терять четкий смысл; однако оно во всяком случае может быть использовано хотя бы для оценочного расчета.
  6. Прежде всего использование таких устройств, не основанных на электромагнитной индукции, обусловлено такими причинами, как необходимость или желательность иметь меньший размер элемента, чем это возможно для катушки индуктивности; например - в микросхемах, а также для элементов очень большой индуктивности.
  7. Генри (единица индуктивности) // БСЭ
  8. Glenn Elert. The Physics Hypertextbook: Inductance (1998–2008). Архивировано из первоисточника 19 ноября 2012.
  9. Michael W. Davidson. Molecular Expressions: Electricity and Magnetism Introduction: Inductance (1995–2008). Архивировано из первоисточника 19 ноября 2012.
  10. Генри Джозеф//БСЭ
  11. Heaviside, O. Electrician. Feb. 12, 1886, p. 271. См. репринт.
  12. Присутствие магнетика особенно важно для катушек с ферромагнитным сердечником итп.
  13. Здесь имеется в виду настоящая индуктивность; в электронике можно создать искусственно элементы (не основанные на явлении самоиндукции), зависимость ЭДС в которых от производной тока будет такой же, как в катушке индуктивности, но с коэффициентом противоположного знака — такие элементы можно условно назвать (по их поведению в электрической цепи) элементами с отрицательной индуктивностью, однако они не имеют отношения к предмету данной статьи.
  14. Если считать структуру токов (точно или приближенно) фиксированной, то есть если токи не перераспределяются по объему проводника в процессе их возбуждения.
  15. Потокосцепление // БСЭ
  16. * Сивухин Д. В. Общий курс физики. — М.. — Т. III. Электричество.
  17. Как и в других случаях, присутствие магнетика, особенно если это ферромагнетик, для какового всегда имеет место гистерезис, приводит к более или менее существенной нелинейности (особенно большой для магнитожестких материалов сердечника); поэтому формулу для индуктивности, подразумевающей именно линейное приближение, следует считать вообще говоря лишь приближенной, в в качестве магнитной проницаемости в формулу входит некоторая эффективная величина, вообще говоря (а для ферромагнетиков как правило) зависящая от величины (или амплитуды) тока в катушке.
  18. 1 2 3 Физическая энциклопедия, см.
  19. Lorenz, L. (1879). «Über die Fortpflanzung der Elektrizität». Annalen der Physik VII: 161–193. (The expression given is the inductance of a cylinder with a current around its surface)..
  20. Elliott R. S. Electromagnetics. — New York: IEEE Press, 1993. Замечание: Постоянная -3/2 неправильна.
  21. Rosa, E.B. (1908). «The Self and Mutual Inductances of Linear Conductors». Bulletin of the Bureau of Standards 4 (2): 301–344.
  22. Moscow Power Engineering Institute: Mathcad Calculation Server