Каталитический риформинг

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Каталитический риформинг (от англ. to reform — переделывать, улучшать) — каталитическая ароматизация (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов), относящаяся наряду с каталитической изомеризацией лёгких алканов к гидрокаталитическим процессам реформирования нефтяного сырья. Каталитическому риформингу подвергают прямогонные гидроочищенные тяжёлые бензины с пределами выкипания 80—180 °С. Помимо облагораживания бензинов каталитический риформинг используют для получения индивидуальных аренов (бензола, толуола и ксилолов), в этом случае риформингу подвергают узкокипящие фракции бензинового сырья.

Историческая справка[править | править вики-текст]

Дегидрирование шестичленных нафтенов с образованием ароматических соединений в присутствии никеля и металлов платиновой группы при 300 °С было открыто Н.Д. Зелинским в 1911 году. В 1936 году Б.Л. Молдавский и Н.Д. Камушер на катализаторе Cr2O3 при 470 °С и Б.А. Казанский и А.Ф. Платэ на катализаторе Pt/C при 310 °С открыли ароматизацию алканов. Первый промышленный процесс был осуществлен на катализаторе Cr2O3/Al2O3 в 1939 году. Новое поколение катализаторов было предложено фирмой UOP в 1949 году под руководством В.П. Хэнзела. Этот вариант риформинга, протекающий при 450 °С и 5-6 МПа на катализаторах Pt/Al2O3 или Pt/алюмосиликат, получил название платформинга. Технологически процесс осуществлялся в реакторе с неподвижным слоем катализатора. Платформинг позволял получать бензин с октановым числом до 100 пунктов. В 1969 году компании Chevron был выдан первый патент на биметаллический катализатор риформинга. В качестве второго металла используют добавки рения, олова и иридия, что позволяет значительно увеличить стабильность катализатора и соответственно понизить рабочее давление в реакторе. В 1971 году фирмой UOP было предложено новое техническое решение и создана первая установка риформинга с непрерывной регенерацией катализатора. В этом случае удается еще понизить рабочее давление в реакторе, а также снизить затраты водорода на процесс. В настоящее время в мире используются установки как с неподвижным слоем катализатора, так и с непрерывной регенерацией.

Реакции риформинга[править | править вики-текст]

Целевые реакции[править | править вики-текст]

Дегидрирование нафтеновых углеводородов в ароматические:

С6H12 → C6H6 + 3H2 + 221 кДж/моль

Изомеризация пятичленных циклоалканов в производные циклогексана:

С5H9-СН3 → C6H12 - 15,9 кДж/моль

Изомеризация н-алканов в изоалканы:

н-С6H14 → изо-C6H14 - 5,8 кДж/моль

Дегидроциклизация алканов в ароматические углеводороды (ароматизация):

С6H14 → C6H6 + 3H2 + 265 кДж/моль

Побочные реакции[править | править вики-текст]

Дегидрирование алканов в олефины:

С6H14 → C6H12 + H2 + 130 кДж/моль

Гидрокрекинг алканов:

н-С9H20 + H2 → изо-C4H10 + изо-С5H12

Каталитический риформинг[править | править вики-текст]

Основными целями риформинга являются:

Октановые числа ароматических углеводородов:

Углеводород исследовательское моторное дорожное
Бензол (Ткип = 80 °С) 106 88 97
Толуол (Ткип = 111 °С) 112 98 105
пара-Ксилол (Ткип = 138 °С) 120 98 109
мета-Ксилол(Ткип = 139 °С) 120 99 109,5
oртo-Ксилол (Ткип = 144 °С) 105 87 96
Этилбензолкип = 136 °С) 114 91 102,5
Сумма ароматики С9 117 98 107,5
Сумма ароматики С10 110 92 101

Процессы каталитического риформинга осуществляются в присутствии бифункциональных катализаторов — платины, чистой или с добавками рения, иридия, галлия, германия, олова, нанесенной на активный оксид алюминия с добавкой хлора. Платина выполняет гидрирующие-дегидрирующие функции, она тонко диспергированна на поверхности носителя, другие металлы поддерживают дисперсное состояние платины. Носитель — активный оксид алюминия обладает протонными и апротонными кислотными центрами, на которых протекают карбонийионные реакции: изомеризация нафтеновых колец, гидрокрекинг парафинов и частичная изомеризация низкомолекулярных парафинов и олефинов. Температура процесса 480-520 °C, давление 15-35 кгс/см². Следует отметить, что большое содержание ароматических углеводородов в бензине плохо сказывается на эксплуатационных и экологических показателях топлива. Повышается нагарообразование и выбросы канцерогенных веществ. Особенно это касается бензола, при сгорании которого образуется бензпирен — сильнейший канцероген. Для нефтехимий риформинг — один из главных процессов. Сырьём для полистирола является стирол продукт риформинга.

Базовые процессы риформинга[править | править вики-текст]

В настоящее время в мировой промышленности используются процессы риформинга со стационарным слоем катализатора и непрерывной регенерацией катализатора.

Процесс со стационарным слоем катализатора[править | править вики-текст]

На установкам риформинга со стационарным слоем катализатора гидроочищенное сырье подвергают предварительной стабилизации и ректификации в специальной колонне.

Схема промышленной установки риформинга со стационарным слоем катализатора[2]. 1 - сырьевой насос; 2 - теплообменники; 3 - рибойлеры; 4 - колонна для предварительной стабилизации и ректификации сырья; 5,13 - холодильники; 6 - емкости для орошения колонн; 7 - печь для нагрева сырья и циркулирующего водородсодержащего газа; 8,10,11 - реакторы; 9 - печь для межреакторного нагрева газо-сырьевой смеси; 12 - колонна для стабилизации жидких продуктов; 14 - газосепаратор высокого давления; 15 - компрессор для циркуляции водородсодержащего газа.

Фракция 80-180°С в смеси с рециркулирующим водородсодержащим газом поступает последовательно в три (иногда четыре) стальных реактора. Между реакторами смесь подогревается, поскольку дегидрирование, протекающее в первых реакторах, сильно эндотермический процесс. Каждый реактор работает в режиме, близком к адиабатическому. Катализатор распределяют по реакторам неравномерно, в первом - наименьшее количество, в последнем - наибольшее. Жидкие продукты стабилизируют в специальной колонне, газообразные попадают в компрессор для циркуляции водородсодержащего газа. Типичные условия процесса: 490-530°С, 2-3,5 МПа, объемная скорость подачи сырья 1,5-2,5 ч-1, водород:сырье = 5-10:1.

Основные факторы процесса риформинга[править | править вики-текст]

Качество сырья[править | править вики-текст]

Ввиду того, что основной реакцией образования ароматических соединений является дегидрирование нафтенов, эффективность риформинга будет тем выше, чем выше содержание нафтенов в сырье. Выход риформатов из бензиновых фракций, богатых нафтенами, на 3,5-5%, а иногда на 10-12% больше, чем из парафинистого сырья при выработке катализата с одинаковым октановым числом. В сырье риформинга нежелательно присутствие алифатических непредельных соединений, поскольку при этом водород нерационально расходуется на их гидрирование. Поэтому риформингу подвергают бензиновые фракции прямогонного происхождения. Риформинг бензинов вторичного происхождения (например, термического крекинга) возможен только в смеси с прямогонным сырьем после глубокой гидроочистки.

Фракционный состав сырья определяется назначением процесса. При получении катализатов с целью производства высокооктановых бензинов оптимальным сырьем является фракция, выкипающая в пределах 85-180°C. Применение сырья с температурой начала кипения ниже 85°C нецелесообразно, так как это влечет повышенное газообразование за счет гидрокрекинга, при этом прироста эффективности ароматизации наблюдаться не будет в виду того, что углеводороды С6 ароматизуются наиболее трудно. Кроме того, использование такого сырья приведет к непроизводительной загрузке реактора балластными фракциями. Наличие в сырье фракций, выкипающих выше 180°C, нежелательно по причине интенсификации коксообразования, влекущего дезактивацию катализатора. При получении индивидуальных бензола и толуола сырьем служат узкие бензиновые фракции, выкипающие в пределах 62-85°C и 85-105°C, соответственно. Бензол образуется из циклогексана, метилциклопентана и н-гексана, толуол - из метилциклогексана, диметилциклопентана и н-гептана.

Сырье не должно содержать компонентов, влекущих дезактивацию катализатора. К ним относятся сернистые соединения, содержание которых не должно превышать 1*10-4%, азотистые соединения (не более 0,5*10-4%) и влага (не более 4*10-4%). Максимально допустимое содержание металлорганических микропримесей (мышьяк, свинец, медь) в гидроочищенном сырье риформинга составляет 0,0001 ppm, а в негидроочищенном пусковом сырье - 0,005 ppm.

Температура окончания кипения сырья[править | править вики-текст]

Температура окончания кипения сырья может в некоторой степени варьироваться и определяется целями риформинга. Поскольку температура конца кипения риформата, как правило, на 8-10°С выше, чем у сырья, температура окончания кипения сырья риформинга не должна превышать 200°С для удовлетворения паспортных данных на бензин[3].

Процессы каталитического риформинга[править | править вики-текст]

Первая установка риформинга была пущена по лицензии фирмы UOP в 1949 г. Это был "полурегенеративный риформинг", то есть каталитический риформинг на алюмоплатиновом катализаторе в реакторах со стационарным слоем и с периодической остановкой установки для регенерации катализатора. Основными лицензиарами процесса риформинга в мире являются 9 фирм, причем лидерство принадлежит UOP, по лицензиям которой построено около 800 установок. В бывшем СССР разработкой процесса занимались институты "ВНИИНефтехим" и "Ленгипронефтехим".

Процесс Разработчик Первая установка
Платформинг (полурегенеративный) UOP 1949 г.
Синклер-Бейкер (полурегенеративный) Sinclair-Baker 1952 г.
Гудриформинг (полурегенеративный) Houdry 1953 г.
Ультраформинг (с периодической регенерацией) Exxon 1953-1956 гг.
Пауэрформинг (с периодической регенерацией) IFP (Французский институт нефти) 1954 г.
Каталитический риформинг (с периодической регенерацией) IFP 1964 г.
Магнаформинг (с периодической регенерацией) Atlantic Richfield 1967 г.
Рениформинг (полурегенеративный) Chevron 1970 г.
Платформинг (с непрерывной регенерацией) UOP 1971 г.
Каталитический риформинг (с непрерывной регенерацией) IFP 1973 г.
Аромайзинг (с непрерывной регенерацией) IFP 1977 г.

Примечания[править | править вики-текст]

  1. С. А. Ахметов Лекции по технологии глубокой переработки нефти в моторные топлива: Учебное пособие. — СПб.: Недра, 2007. — 312 с., смотреть страницу 230
  2. О.В.Крылов. Гетерогенный катализ. Учебное пособие для вузов. — Москва: ИКЦ «Академкнига», 2004. — 679 с. — ISBN 5-94628-141-0
  3. Б.Лич. Катализ в промышленности. Том 1.. — Москва: Мир, 1986. — 324 с.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]