Квадрирование квадрата

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Разбиение квадрата на 21 квадрат, среди которых нет равных. Цифра внутри каждого квадрата означает длину его стороны. Соответственно, длина стороны большого квадрата равна (складывая длины сторон крайних квадратов) 50 + 35 + 27 = 50 + 29 + 33 = 33 + 37 + 42 = 27 + 19 + 24 + 42 = 112

Квадри́рование квадра́та — задача о разбиении квадрата на конечное число меньших квадратов. В более узком смысле — задача о разбиении квадрата на конечное число попарно неравных между собой квадратов.

В 19361938 годах её решили четыре студента Тринити-колледжа Кембриджского университета [1].

Терминология[править | править вики-текст]

  • Квадрат, разбитый на попарно неравные квадраты, называется совершенным.
  • Порядком квадрата, разбитого на составные квадраты, называется число составляющих его квадратов.
  • Разбиение квадрата, никакое подмножество квадратов которого не образует прямоугольник (не считая отдельных квадратов), называется простым.

Диаграмма Смита[править | править вики-текст]

Диаграмма Смита для прямоугольника. Верхняя клемма «+» соответствует верхней стороне прямоугольника, нижняя клемма «−» — нижней стороне. Остальные клеммы соответствуют промежуточным горизонтальным отрезкам. Если длине стороны квадрата сопоставить силу тока, то диаграмма становится электрической схемой, для которой выполняются правила Кирхгофа. Например, длина верхней стороны прямоугольника складывается из сторон 6 + 4 + 5 = 15, что соответствует разветвлению тока в 15 единиц на три пропорциональные части.

Ключевую роль в решении задачи квадрирования сыграло предложение для анализа диаграммы, названной диаграммой Смита, которая любому разбиению квадрата (или прямоугольника) ставит в соответствие эквивалентную электрическую цепь. Каждому горизонтальному отрезку на схеме разбиения квадрата соответствует «клемма» этой цепи, а каждому квадрату разбиения — проводник, соединяющий две «клеммы». Сила тока, текущего по проводнику, равна длине стороны соответствующего квадрата. Если считать сопротивление каждого проводника равным единице, такая электрическая цепь ведёт себя как «настоящая» и подчиняется правилам Кирхгофа для токов в цепи. Это позволило применять для решения задачи квадрирования хорошо разработанную теорию электрических цепей.

История[править | править вики-текст]

  • Самые первые найденные Бруксом, Смитом, Стоуном и Таттом совершенные квадраты были 69-го порядка.
  • В 1939 году Р. Шпраг (R. Sprague) нашёл совершенный квадрат 55-го порядка, это было первое опубликованное решение для совершенного квадрата. *Позднее Т. Г. Уиллкокс (T. H. Willcocks) нашёл совершенный квадрат 24-го порядка, который долгое время держал рекорд малости порядка.
  • В 1978 году голландский математик А. Й. В. Дуйвестэйн (A. J. W. Duijvestijn) с помощью компьютера нашёл разбиение квадрата на 21 квадрат, среди которых нет равных (см. рис.). Он так же доказал, что
    • Не существует совершенного квадрата меньшего порядка.
    • Найденное им разбиение — единственно возможное для разбиения 21-го порядка.

Кубирование куба[править | править вики-текст]

«Кубирование куба», то есть разбиение куба на конечное число попарно неравных между собой кубов невозможно. Доказательство этого факта было дано Бруксом, Смитом, Стоуном и Таттом.

Доказательство

Допустим, что искомое разбиение куба существует.

Рассмотрим одну из граней куба, очевидно, не сужая общность, можно выбрать нижнюю грань.

На нижней грани стоят разновеликие кубы, своими нижними рёбрами разбивающие грань на разновеликие квадраты.

Найдём самый маленький квадрат разбиения нижней грани. Очевидно, что этот квадрат не может примыкать к ребру куба, будучи ограничен сторонами бо́льших квадратов, следовательно, он может располагаться где-то внутри грани.

Теперь рассмотрим верхнюю грань этого малого кубика. Стоящие на нём кубики меньшего размера снова разбивают верхнюю грань этого кубика на разновеликие квадраты, причём самый малый квадрат разбиения верхней грани снова не может принадлежать ребру кубика и находится внутри грани.

Продолжая этот процесс рассуждения, приходим к противоречию, что доказывает теорему.

Также легко доказывается теорема о невозможности «гиперкубирование гиперкуба» для гиперкубов любой размерности, большей 3-х. Действительно, для любой размерности n гиперкубы разбиения, прилегающие к какой-либо (n − 1)-мерной гиперграни исходного гиперкуба, должны разбивать эту гипергрань на конечное число попарно неравных (n − 1)-мерных гиперкубов. При n = 4 «гиперкубирование» невозможно, так как должно порождать «кубирование» 3-мерных гиперграней исходного 4-мерного гиперкуба. Индукцией по n можно сделать заключение о невозможности «гиперкубирования» для всех n > 3.

Литература[править | править вики-текст]

  • М. Гарднер, Математические головоломки и развлечения. Пер. с английского Ю. Данилова. Изд. «Оникс», Москва, 1994, стр. 305—326.
  • И. М. Яглом, Как разрезать квадрат серия «Математическая библиотечка» М., Наука, 1968—112 с.
  • C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of Orders 21 Through 25, Eindhoven Univ. Technology, Dept. of Math., Report 92-WSK-03, Nov. 1992.
  • C. J. Bouwkamp and A. J. W. Duijvestijn, Album of Simple Perfect Squared Squares of order 26, Eindhoven University of Technology, Faculty of Mathematics and Computing Science, EUT Report 94-WSK-02, December 1994.
  • Brooks, R. L.; Smith, C. A. B.; Stone, A. H.; and Tutte, W. T. The Dissection of Rectangles into Squares, Duke Math. J. 7, 312—340, 1940
  • Martin Gardner, Squaring the square, in The 2nd Scientific American Book of Mathematical Puzzles and Diversions.
  • H. Meschkowski, Unsolved and Unsolvable Problems in Geometry, Oliver and Boyd, 1966, Edinburgh, pp. 9—102.
  • S. Stein, Mathematics: The Man-Made Universe, (2nd ed.) Freeman and Co., 1969, San Francisco, pp. 92—124.
  • W. Tutte, Squaring the Square, Canadian journal of Mathematics, 1950, pp.197—209.
  • W. Tutte, The Quest of the Perfect Square, The American Mathematical Monthly, 1965, Vol. 72, No. 2, pp. 29—35.
  1. Brooks, R. L.; Smith, C. A. B.; Stone, A. H.; and Tutte, W. T. The Dissection of Rectangles into Squares, Duke Math. J. 7, 312—340, 1940

Ссылки[править | править вики-текст]