Квантовая суперпозиция

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Квантовая механика
\Delta x\cdot\Delta p_x \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение
Математические основы
См. также: Портал:Физика

Ква́нтовая суперпози́ция (когерентная суперпозиция) — это суперпозиция состояний, которые не могут быть реализованы одновременно с классической точки зрения, это суперпозиция альтернативных (взаимоисключающих) состояний. Принцип существования суперпозиций состояний обычно называется в контексте квантовой механики просто принципом суперпозиции.

Если функции  \Psi_1 \ и  \Psi_2 \ являются допустимыми волновыми функциями, описывающими состояние квантовой системы, то их линейная суперпозиция,  \Psi_3 = c_1\Psi_1 + c_2\Psi_2 \ , также описывает какое-то состояние данной системы. Если измерение какой-либо физической величины  \hat f \ в состоянии  |\Psi_1\rangle приводит к определённому результату  f_1 \ , а в состоянии  |\Psi_2\rangle — к результату  f_2 \ , то измерение в состоянии  |\Psi_3\rangle приведёт к результату  f_1 \ или  f_2 \ с вероятностями  |c_1|^2 \ и  |c_2|^2 \ соответственно.

Из принципа суперпозиции также следует, что все уравнения на волновые функции (например, уравнение Шрёдингера) в квантовой механике должны быть линейными.

Любая наблюдаемая величина (например, положение, импульс или энергия частицы) является собственным значением эрмитова линейного оператора, соответствующим конкретному собственному состоянию этого оператора, то есть определённой волновой функции, действие оператора на которую сводится к умножению на число — собственное значение. Линейная комбинация двух волновых функций — собственных состояний оператора также будет описывать реально существующее физическое состояние системы. Однако для такой системы наблюдаемая величина уже не будет иметь конкретного значения, и в результате измерения будет получено одно из двух значений с вероятностями, определяемыми квадратами коэффициентов (амплитуд), с которыми базисные функции входят в линейную комбинацию. (Разумеется, волновая функция системы может быть линейной комбинацией и более чем двух базисных состояний, вплоть до бесконечного их количества).

Важными следствиями квантовой суперпозиции являются различные интерференционные эффекты (см. опыт Юнга, дифракционные методы), а для составных систем — зацепленные состояния.

Популярный пример парадоксального поведения квантовомеханических объектов с точки зрения макроскопического наблюдателя — кот Шрёдингера, который может представлять собой квантовую суперпозицию живого и мёртвого кота. Впрочем, достоверно ничего не известно о применимости принципа суперпозиции (как и квантовой механики вообще) к макроскопическим системам.

Отличия от других суперпозиций[править | править вики-текст]

Квантовую суперпозицию (суперпозицию «волновых функций»), несмотря на сходство математической формулировки, не следует путать с принципом суперпозиции для обычных волновых явлений (поля). Возможность складывать квантовые состояния не обуславливает линейность каких-то физических систем. Суперпозиция поля для, скажем, электромагнитного случая, означает например то, что из двух разных состояний фотона можно сделать состояние электромагнитного поля с двумя фотонами, чего суперпозиция квантовая сделать не может. А полевой суперпозицией состояния вакуума (нулевого состояния) и некой волны будет всё та же волна, в отличие от квантовых суперпозиций 0- и 1-фотонного состояний, являющихся новыми состояниями. Квантовая суперпозиция может быть применима к подобным системам независимо от того, описываются они уравнениями линейными или нелинейными (то есть, справедлив или нет полевой принцип суперпозиции). См. Статистика Бозе — Эйнштейна по поводу связи между квантовой и полевой суперпозициями для случая бозонов.

Также, квантовую (когерентную) суперпозицию не следует путать с так называемыми смешанными состояниями (см. матрица плотности) — «некогерентной суперпозицией». Это тоже разные вещи.

См. также[править | править вики-текст]