Класс BPP

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории алгоритмов классом сложности BPP (от англ. bounded-error, probabilistic, polynomial) называется класс предикатов, быстро (за полиномиальное время) вычислимых и дающих ответ с высокой вероятностью (причём, жертвуя временем, можно добиться сколь угодно высокой точности ответа). Задачи, решаемые вероятностными методами и лежащие в BPP, возникают на практике очень часто.

Формальное определение[править | править вики-текст]

Классом BPP называется класс предикатов P(x), вычислимых на вероятностных машинах Тьюринга (обычных машинах Тьюринга с лентой случайных чисел) за полиномиальное время с ошибкой не более ⅓. Это значит, что вычисляющая значение предиката вероятностная машина Тьюринга даст ответ за время, равное O(nk), где n — длина x, причём если правильный ответ 1, то машина выдаёт 1 с вероятностью как минимум ⅔, и наоборот. Множество слов, на которых P(x) возвращает 1, называется языком, распознаваемым предикатом P(x).

Число ⅓ в определении выбрано произвольно: если вместо него выбрать любое число p, строго меньшее ½, то получится тот же самый класс. Это верно, поскольку если есть машина Тьюринга, распознающая язык с вероятностью ошибки p за время O(nk), то точность можно сколь угодно хорошо улучшить за счёт относительно небольшого прироста времени. Если мы запустим машину n раз подряд, а в качестве результата возьмём результат большинства запусков, то вероятность ошибки упадёт до \left(2 \sqrt{p(1-p)} \right)^n, а время станет равным O(nk+1). Здесь n запусков машины рассматриваются как схема Бернулли с n испытаниями и вероятностью успеха 1-p, а формула, выражающая ошибку, — вероятность неудачи не менее чем в половине случаев. Если теперь запустить машину n2 раз подряд, то время возрастёт до O(nk+2), а вероятность ошибки упадёт до \left(2 \sqrt{p(1-p)} \right)^{n^2}. Таким образом, с ростом показателя многочлена, оценивающего время, точность растёт экспоненциально, и можно достичь любого нужного значения.

Отношения с другими классами[править | править вики-текст]

Сам BPP замкнут относительно дополнения. Класс P включён в BPP, поскольку он даёт ответ за полиномиальное время с нулевой ошибкой. BPP включён в класс \Sigma^p_2 \cap \Pi^p_2 полиномиальной иерархии и, как следствие, включён в PH и PSPACE. Кроме того, известно включение BPP в класс P/Poly.


Квантовым аналогом класса BPP (другими словами, расширением класса BPP на квантовые компьютеры) является класс BQP.

\mbox{BPP} \subseteq \mbox{BQP}

Другие свойства[править | править вики-текст]

До 2002 года одной из наиболее известных задач, лежащих в классе BPP, была задача распознавания простоты числа, для которой существовало несколько различных полиномиальных вероятностных алгоритмов, таких как тест Миллера-Рабина, но ни одного детерминированного. Однако, в 2002 году детерминированный полиномиальный алгоритм был найден индийскими математиками Agrawal, Kayan и Saxena, которые таким образом доказали, что задача распознавания простоты числа лежит в классе P. Предложенный ими алгоритм AKS (названный по первым буквам их фамилий) распознает простоту числа длины n за время O(n4).