Компьютерный блок питания

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Подключенный БП в IBM PS/2
Импульсный блок питания персонального компьютера мощностью 450 Вт

Компьютерный блок питания (англ. power supply unit, PSU — блок питания, БП) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений.

В некоторой степени блок питания также:

Описание[править | править вики-текст]

Дублирование блока питания с поддержкой горячей замены в отказоустойчивом сервере

Компьютерный блок питания для настольного компьютера стандарта PC, персонального или игрового, согласно спецификации ATX 2.x, должен обеспечивать выходные напряжения ±5, ±12, +3,3 Вольт, а также +5 Вольт дежурного режима (англ. standby).

  • Основными силовыми цепями являются напряжения +3,3, +5 и +12 В. Причем, чем выше напряжение, тем большая мощность передается по данным цепям. Отрицательные напряжения питания (−5 и −12 В) допускают небольшие токи и в современных материнских платах в настоящее время практически не используются.
    • Напряжение −5 В использовалось только интерфейсом ISA материнских плат. Для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2 использовался контакт 20 и белый провод. Это напряжение (а также контакт и провод) не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
    • Напряжение −12 В необходимо лишь для полной реализации стандарта последовательного интерфейса RS-232 с использованием микросхем без встроенного инвертора и умножителя напряжения, поэтому также часто отсутствует.
  • Напряжения ±5, ±12, +3,3 В дежурного режима используются материнской платой. Для жёстких дисков, оптических приводов, вентиляторов используются только напряжения +5 и +12 В.
  • Современные электронные компоненты используют напряжение питания не выше +5 Вольт. Наиболее мощные потребители энергии, такие как видеокарта, центральный процессор, северный мост подключаются через размещенные на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В так и +12 В.
  • Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 В целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.
  • Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.

В большинстве случаев используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме. Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяется значительно реже.

Устройство (схемотехника)[править | править вики-текст]

Импульсный блок питания компьютера (ATX) со снятой крышкой: A — входной диодный выпрямитель, ниже виден входной фильтр; B — входные сглаживающие конденсаторы, правее виден радиатор высоковольтных транзисторов; C — импульсный трансформатор, правее виден радиатор низковольтных диодных выпрямителей; D — дроссель групповой стабилизации; E — конденсаторы выходного фильтра

Широко распространённая схема импульсного источника питания состоит из следующих частей:

Входные цепи
  • Входной фильтр, предотвращающий распространение импульсных помех в питающую сеть[1]. Также, входной фильтр уменьшает бросок тока заряда электролитических конденсаторов при включении БП в сеть (это может привести к повреждению входного выпрямительного моста).
  • В качественных моделях — пассивный (в дешёвых) либо активный корректор мощности (PFC) снижающий нагрузку на питающую сеть.
  • Входной выпрямительный мост, преобразующий переменное напряжение в постоянное пульсирующее.
  • Конденсаторный фильтр, сглаживающий пульсации выпрямленного напряжения.
  • Отдельный маломощный блок питания, выдающий +5 В дежурного режима мат. платы и +12 В для питания микросхемы преобразователя самого ИБП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией вых. напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС, либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.
Преобразователь
  • Полумостовой преобразователь на двух биполярных транзисторах
  • Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).
  • Импульсный высокочастотный трансформатор, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
  • Цепи обратной связи, которые поддерживают стабильное напряжение на выходе блока питания.
  • Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ.
Выходные цепи
  • Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки, обладающие малым прямым падением напряжения.
  • Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор пропорционально снизит напряжение по другим выходным цепям. Цепь обратной связи обнаружит снижение напряжения на выходе и увеличит общую подачу энергии, что восстановит требуемые значения напряжений.
  • Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрируют импульсы, тем самым получая необходимые значения напряжений, которые, благодаря дросселю групповой стабилизации, значительно ниже напряжений с выхода трансформатора.
  • Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу.

Достоинства такого блока питания:

  • Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.
  • Высокий КПД (65-70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.
  • Малые габариты и масса, обусловленные как малым выделением тепла на регулирующем элементе, так и малыми габаритами трансформатора, благодаря тому, что последний работает на высокой частоте.
  • Малая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность.
  • Возможность подключения к сетям с широким диапазоном выбора напряжений и частот, или даже сетям постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

Недостатки полумостового блока питания на биполярных транзисторах:

  • При построении схем силовой электроники использование биполярных транзисторов в качестве ключевых элементов снижает общий КПД устройства[2]. Управление биполярными транзисторами требует значительных затрат энергии.
    Всё больше компьютерных блоков питания строится на более дорогих мощных MOSFET-транзисторах. Схемотехника таких компьютерных блоков питания реализована как в виде полумостовых схем, так и обратноходовых преобразователей. Для удовлетворения массогабаритных требований к компьютерному блоку питания, в обратноходовых преобразователях используются значительно более высокие частоты преобразования (100-150 кГц).
  • Большое количество намоточных изделий, индивидуально разрабатываемых для каждого типа блоков питания. Такие изделия снижают технологичность изготовления БП.
  • Во многих случаях недостаточная стабилизация выходного напряжения по каналам. Дроссель групповой стабилизации не позволяет с высокой точностью обеспечивать значения напряжений во всех каналах. Более дорогие, а также мощные современные блоки питания формируют напряжения ±5 и 3,3 В с помощью вторичных преобразователей из канала 12 В.

Стандарты[править | править вики-текст]

AT (устаревший)[править | править вики-текст]

AT hauptplatine stromanschluss.jpg
Один из двух шестиконтактных разъёмов питания AT

В блоках питания у компьютеров форм-фактора AT выключатель питания разрывает силовую цепь и обычно вынесен на переднюю панель корпуса отдельными проводами; питание дежурного режима с соответствующими цепями отсутствует в принципе. Однако почти все материнские платы стандарта АТ+ATX имели выход управления блоком питания, а блоки питания, в то же время, вход, позволяющий материнской плате стандарта АТ управлять им (включать и выключать).

Блок питания стандарта AT подключается к материнской плате двумя шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным является подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы. Цоколёвка AT-разъёма на материнской плате следующая:

1 2 3 4 5 6 7 8 9 10 11 12
-
PG пустой +12V -12V общий общий общий общий -5V +5V +5V +5V

ATX (современный)[править | править вики-текст]

20-контактный разъём ATX (вид на материнскую плату)
У 24-контактного ATX разъёма, последние 4 контакта могут быть съёмными, для обеспечения совместимости с 20-контактным гнездом на материнской плате
Выход Допуск Минимум Номинальное Максимум Единица измерения
+12V1DC[3] ±5 % +11,40 +12,00 +12,60 Вольт
+12V2DC[4] ±5 % +11,40 +12,00 +12,60 Вольт
+5 VDC ±5 % +4,75 +5,00 +5,25 Вольт
+3.3 VDC[5] ±5 % +3,14 +3,30 +3,47 Вольт
−12 VDC ±10 % −13,20 −12,00 −10,80 Вольт
+5 VSB ±5 % +4,75 +5,00 +5,25 Вольт
  1. для соответствия требованиям законодательства стран по электромагнитным излучениям, в России - требованиям СанПиН 2.2.4.1191—03 2.2.4.1191-03.htm «Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы»
  2. Б.Ю. Семенов Силовая электроника: от простого к сложному. — М.: СОЛОМОН-Пресс, 2005. — 415 с. — (Библиотека инженера).
  3. На пиковой нагрузке +12 VDC, диапазон выходного напряжения +12 VDC может колебаться в пределах ± 10.
  4. Минимальное напряжение уровнем 11.0 VDC во время пиковой нагрузки по +12 V2DC.
  5. Выдержка в диапазоне требуется разъёму основного питания материнской платы и разъёму питания S-ATA.

Повышены требования к +5 VDС — теперь БП должен отдавать ток не менее 12 А (+3,3 VDC — 16,7 А соответственно, но при этом совокупная мощность не должная превысить 61 Вт) для типовой системы потребления мощностью 160 Вт. Выявился перекос выходной мощности: раньше основным был канал +5 В, теперь были продиктованы требования по минимальному току +12 В. Требования были обусловлены дальнейшим ростом мощности комплектующих (в основном, видеокарты), чьи требования не могли быть удовлетворены линиями +5 В из-за очень больших токов в этой линии.

Типовая система, потребляемая мощность 160 Вт
Выход Минимум Номинальное Максимум Единица
измерения
+12VDC 1,0 9,0 11,0 Ампер
+5 VDC 0,3 12,0[1] +5,25 Ампер
+3.3 VDC 0,5 16,7[1] Ампер
−12 VDC 0,0 0,3 Ампер
+5 VSB 0,0 1,5 2,0 Ампер
Типовая система, потребляемая мощность 180 Вт
Выход Минимум Номинальное Максимум Единица
измерения
+12VDC 1,0 13,0 15,0 Ампер
+5 VDC 0,3 10,0[2] +5.25 Ампер
+3,3 VDC 0,5 16,7[2] Ампер
−12 VDC 0,0 0,3 Ампер
+5 VSB 0,0 1,5 2,0 Ампер
Типовая система, потребляемая мощность 220 Вт
Выход Минимум Номинальное Максимум Единица
измерения
+12VDC 1,0 15,0 17,0 Ампер
+5 VDC 0,3 12,0[3] Ампер
+3,3 VDC 0,5 12,0[3] Ампер
−12 VDC 0,0 0,3 Ампер
+5 VSB 0,0 2,0 2,5 Ампер
Типовая система, потребляемая мощность 300 Вт
Выход Минимум Номинальное Максимум Единица
измерения
+12VDC 1,0 18,0 18,0 Ампер
+5 VDC 1,0 16,0[4] 19 Ампер
+3,3 VDC 0,5 12,0[4] Ампер
−12 VDC 0,0 0,4 Ампер
+5 VSB 0,0 2,0 2,5 Ампер
  1. 1 2 Совокупная мощность по линиям +3.3 VDC и +5 VDC не должна превысить 61 Вт
  2. 1 2 Совокупная мощность по линиям +3.3 VDC и +5 VDC не должна превысить 63 Вт
  3. 1 2 Совокупная мощность по линиям +3.3 VDC и +5 VDC не должна превысить 80 Вт
  4. 1 2 Совокупная мощность по линиям +3,3 VDC и +5 VDC не должна превысить 125 Вт

Разъёмы БП / потребителей питания[править | править вики-текст]

Вилки шлейфов питания (из блока питания), без переходников и адаптеров
1) AMP 171822-4 мини-размера для питания 5 и 12 вольтами периферийного устройства (обычно, дисковод)
2) Molex обычного размера (molex 8981)
3) 5-контактные разъёмы MOLEX 88751 для питания устройства с интерфейсом SATA: корпус MOLEX 675820000 или эквивалентный с контактами Molex 675810000 или эквивалентными[1]
4) «PCIe8connector» для питания видеокарты, расщепляемый на «PCIe6connector» (для питания видеокарты)
5) «PCIe6connector» для питания видеокарты
6) «EPS12V» (англ. Entry-Level Power Supply Specification для питания материнской платы
7) «ATX PS 12V» («P4 power connector») для питания материнской платы
8) «ATX12V» основного питания материнской платы: MOLEX 39-01-2040 или эквивалентная с контактами Molex 44476-1112 (HCS) или эквивалентными
  • 20-контактный разъём основного питания +12V1DCV использовался с первыми материнскими платами форм-фактора ATX, до появления материнских плат с шиной PCI-Express.
  • 24-контактный разъём основного питания +12V1DC (вилка типа MOLEХ 24 Pin Molex Mini-Fit Jr. PN# 39-01-2240 или эквивалентная на стороне БП с контактами типа Molex 44476-1112 (HCS) или эквивалентная; розетка ответной части на материнской плате типа Molex 44206-0007 или эквивалентная) создан для поддержки материнских плат с шиной PCI Express, потребляющей 75 Вт[2]. Большинство материнских плат, работающих на ATX12V 2.0, поддерживают также блоки питания ATX v1.x (4 контакта остаются незадействованными), для этого некоторые производители делают колодку новых четырёх контактов отстёгивающейся.
24-контактный разъём питания материнской платы ATX12V 2.x
(20-контактный не имеет последних четырёх: 11, 12, 23 и 24)
Цвет Сигнал Контакт Контакт Сигнал Цвет
Оранжевый +3.3 V 1 13 +3.3 V Оранжевый
+3.3 V sense Коричневый
Оранжевый +3.3 V 2 14 −12 V Синий
Чёрный Земля 3 15 Земля Чёрный
Красный +5 V 4 16 Power on Зелёный
Чёрный Земля 5 17 Земля Чёрный
Красный +5 V 6 18 Земля Чёрный
Чёрный Земля 7 19 Земля Чёрный
Серый Power good 8 20 −5 V Белый
Фиолетовый +5 VSB[3] 9 21 +5 V Красный
Жёлтый +12 V 10 22 +5 V Красный
Жёлтый +12 V 11 23 +5 V Красный
Оранжевый +3.3 V 12 24 Земля Чёрный
  • Три затененных контакты (8, 13 и 16) — сигналы управления, а не питания.
  • «Power On» подтягивается на резисторе до уровня +5 Вольт внутри блока питания, и должен быть низкого уровня для включения питания.
  • «Power good» держится на низком уровне, пока на других выходах ещё не сформировано напряжение требуемого уровня.
  • Провод «+3.3 V sense» используется для дистанционного зондирования[4].
Контакт 20 (и белый провод) используется для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2. Это напряжение не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
В 20-контактной версии правые контакты нумеруются с 11 по 20.
Провод +3.3 VDC оранжевого цвета и отводка +3.3 V sense коричневого цвета, подключенные к 13-му контакту, имеют толщину 18 AWG; все остальные — 22 AWG


Также на БП размещаются:

  • 4-контактный разъём «ATX12V» (именуемый также «P4 power connector») — вспомогательный разъём для питания процессора: вилка типа MOLEX 39-01-2040 или эквивалентная с контактами Molex 44476-1112 (HCS) или эквивалентными; розетка ответной части на материнской плате типа Molex 39-29-9042 или эквивалентная. Провод толщиной 18 AWG.
    В случае построения высокопотребляемой системы (свыше 700 Вт), расширяется до «EPS12V» (англ. Entry-Level Power Supply Specification) — 8-контактного вспомогательного разъёма для питания материнской платы и процессора 12 В,
  • 4-контактный разъём для дисковода с контактами AMP 171822-4 или эквивалентными. Провод толщиной 20 AWG.
  • 4-контактный разъём для питания периферийного устройства типа жёсткого диска или оптического накопителя с интерфейсом P-ATA: вилка типа MOLEХ 8981-04P или эквивалентная с контактами AMP 61314-1 или эквивалентными. Провод толщиной 18 AWG.
  • 5-контактные разъёмы MOLEX 88751 для подключения питания SATA-устройств состоит из корпуса типа MOLEX 675820000 или эквивалентного с контактами Molex 675810000 или эквивалентными[1].
  • 6- либо 8-контактные разъёмы для питания PCI Express x16 видеокарт.

В конце 2000-х годов для монтажа кабелей стал применяться модульный принцип, когда из корпуса БП выходит лишь основной 24(20+4)-контактный кабель и 4+4-контактный кабель питания EPS12V для материнской платы ATX12V/EPS12V, прочие же кабеля для периферии выполняются съёмными, на разъёмах.[5].

КПД — «80 PLUS»[править | править вики-текст]

КПД «обычного» блока питания (описанного выше) имеет величину порядка 65–70 %. Для получения бо́льших величин применяются специальные схемотехнические решения.

Сертификация 80 PLUS (как часть принятого в 2007 году стандарта энергосбережения Energy Star 4.0) подразумевает сертификацию компьютерных блоков питания на соответствие определённым нормативам по эффективности энергопотребления: КПД БП должен быть не менее 80 % при 20, 50 и 100 % нагрузке относительно номинальной мощности БП, а коэффициент мощности должен быть 0,9 или выше при 100 % нагрузке.

И хотя первоначально сертификация по стандарту 80 PLUS проводилась только для использования в сетях с напряжением 115 В (которые распространены, к примеру, в США, но не на территории России), и поэтому КПД блоков питания сертифицированных по стандарту 80 PLUS может быть ниже 80 % в сетях 220/230 В, однако последующие уровни спецификации, начиная с 80 PLUS Bronze, сертифицировались и для применения в сетях 230 В. Тем не менее, сертифицированные по стандарту 80 PLUS БП могут иметь КПД ниже 80 % при нагрузках менее 20 %, что достаточно важно, так как большинство ПК редко работают в режиме максимальной потребляемой мощности, а гораздо чаще простаивают. Также, КПД может быть ниже заявленного в условиях эксплуатации БП при температуре, отличной от комнатной (при которой проводится сертификация).[6]

В 2008 году к стандарту были добавлены уровни сертификации Bronze, Silver, Gold, в 2009 - Platinum, а в 2012 - Titanium:

Процент от номинальной нагрузки 10% 20% 50% 100%
80 PLUS 80% 80% 80%
80 PLUS Bronze 81% 85% 81%
80 PLUS Silver 85% 89% 85%
80 PLUS Gold 88% 92% 88%
80 PLUS Platinum 90% 94% 91%
80 PLUS Titanium 90% 94% 96% 91%

Требуемая мощность[править | править вики-текст]

Мощность, отдаваемая в нагрузку существующими БП, в значительной степени зависит от мощности компьютерной системы и варьируется в пределах от 50 (встраиваемые платформы малых форм-факторов) до 1800 Вт (самые высокопроизводительные рабочие станции, серверы или геймерские машины).

В случае построения кластера, расчёт необходимого количества подводимой энергии учитывает потребляемую кластером мощность, мощность систем охлаждения и вентиляции, КПД которых в свою очередь отличный от единицы. По данным компании APC by Schneider Electric, на каждый Ватт потребляемой серверами мощности, требуется обеспечение 1,06 Ватта систем охлаждения. Особую важность грамотный расчёт имеет при создании центра хранения и обработки данных (ЦОД) с резервированием по формуле N+1.

Блоки питания ноутбуков[править | править вики-текст]

Блок питания ноутбука
Универсальное зарядное к ноутбукам.
Gembird NPA-AC1-GS, 90 Вт

Блок питания для ноутбука (и прочих мобильных компьютеров) применяется как для зарядки его аккумуляторной батареи (АКБ), так и для обеспечения работы без аккумулятора. По типу исполнения БП ноутбука чаще всего представляет собой внешний блок. Ввиду того, что электрические характеристики различных моделей ноутбуков могут сильно различаться, на внешние блоки питания пока нет единого стандарта и их блоки питания, как правило, не взаимозаменяемы. Существует инициатива по стандартизации блоков питания для ноутбуков[7].

  1. Производители ноутбуков часто используют различные разъёмы питания (их известно несколько десятков типов, хотя широко распространённых всего несколько, отличающихся лишь диаметром штекера[источник не указан 197 дней]). Подключение большинства из них выполняется коаксиальными кабелем с положительным внутренним проводником, хотя существуют разъёмы и с обратной полярностью.
  2. Различаются питающие напряжения: обычно это 18,5 В или 19 В, хотя встречаются варианты с напряжением 15 или 16 В (в осн. субноутбуки); 19,5 В; 20 В или даже 24 В (Apple).
  3. Блоки питания отличаются максимальной выходной мощностью, выдавая ток 3,16 А (для старых типов); 3,42 A; 4,74 А; 6,3 А; 7,9 А, в зависимости от того, насколько мощный компьютер предполагается питать.

К замене блока питания ноутбука следует подходить с осторожностью (заменяющий должен иметь одинаковую полярность, разницу в питающем напряжении, не превышающую 0,5 В, и иметь достаточную мощность), иначе это может привести к выходу ноутбуков из строя.

Выпускаются также универсальные блоки питания, рассчитанные на ноутбуки разных моделей и различных производителей. Такой БП имеет переключатель напряжения и набор сменных штекеров для подключения.

Images.png Внешние изображения
Чертеж БП FSP600-80GLN
Image-silk.png Сборочный чертеж БП FSP600-80GLN в формате PDF

Блоки питания для малогабаритных компьютеров[править | править вики-текст]

Появившиеся платы на чипсете Intel NM10 Express Chipset с впаянными процессорами семейства Atom (типа Intel BOXDN2800MT[8]) не имеют привычного для материнских плат персональных компьютеров 24-контактных разъемов, вместо этого плата запитывается через круглый разъём постоянным током (англ.)русск. извне. Варьируя комплектацией компьютера, выстраиваемой на базе такой материнской платы, можно в широких пределах варьировать требуемым питанием. Например, если собираемая система не будет иметь жёстких дисков и оптических дисководов (которые требуют напряжение 11…12 вольт) для запитки достаточно верхнего порога питающего напряжения восемь вольт:

• External Power Supply – the board can be powered with an 8-19 V DC external 
power supply though the DC jack on the back panel (Figure 13, A). This connector 
accepts dual-barrel plugs with an inner diameter (ID) of 2.5 mm and an outer 
diameter (OD) of 5.5 mm, where the inner contact is +8 V DC (±10 %) through 
+19 V DC (±10 %) and the shell is Ground. The maximum current rating for this 
connector is 8 A.
• Internal Power Supply – the board can alternatively be powered through the 
internal 1 x 2 power connector (Figure 13, B), where pin 1 is Ground and pin 2 is 
+8 V DC (±10 %) through +19 V DC (±10 %). The maximum current rating for 
this connector is 10 A. 

Intel Desktop Board DN2800MT. Product Guide (англ.)

Также, в таблице 39 «Typical System-Level Power Consumption Figures» документа [9] приводится расчёт для выбора параметров питания, в зависимости от задействованных элементов конфигурации системы.

Производители компьютерных блоков питания[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 Подробно описана в спецификации «Serial ATA: High Speed Serialized AT Attachment», раздел 6.3 «Cables and connector specification»
  2. SFX12V Power Supply Design Guide v3.1. March 2005 (англ.)
  3. (англ. standby, дежурный режим), а также сокращение до букв SB в названии касаются использования линий обеспечения питания в дежурном режиме
  4. ATX Specification Version 2.1. Архивировано из первоисточника 28 августа 2011.
  5. Модульный блок питания Cooler Master Silent Pro Gold 600W // 3DNews
  6. Сертификация 80 PLUS для блоков питания // "НИКС".ru
  7. Taiwan notebook companies support PSU standardization
  8. Системная плата Intel BOXDN2800MT для настольных ПК
  9. Intel Desktop Board DN2800MT Technical Product Specification (англ.)
  10. Thermaltake — Блоки питания

Литература[править | править вики-текст]

  1. Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С. 1181-1256. — ISBN 0-7897-3404-4
  2. А.В. Головков, В.Б. Любицкий Блоки питания для системных модулей типа IBM PC-XT/AT. — М.: «ЛАД и Н», 1995.

Ссылки[править | править вики-текст]