Кооперативная игра (математика)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Это статья о термине теории игр. О режиме сетевых игр см. Кооперативная игра

Кооперативная игра — термин теории игр. Кооперативной называется игра, в которой группы игроков — коалиции — могут объединять свои усилия. Этим она отличается от игр, в которых коалиции неприемлемы и каждый обязан играть за себя.

Теория игр занимается изучением конфликтов, то есть ситуаций, в которых группе людей необходимо выработать какое-либо решение, касающееся их всех. Некооперативная теория игр изучает то, как должны действовать игроки, чтобы прийти к тому или иному результату, кооперативная же теория игр изучает вопрос о том, какие исходы достижимы и условия достижения этих исходов.

Математическое представление[править | править вики-текст]

Согласно определению, кооперативной игрой называется пара (N,v), где N — это множество игроков, а v — это функция: 2NR, из множества всех коалиций в множество вещественных чисел (так называемая характеристическая функция). Предполагается, что пустая коалиция зарабатывает ноль, то есть v(∅) = 0. Характеристическая функция описывает величину выгоды, которую данное подмножество игроков может достичь путем объединения в коалицию. Подразумевается, что игроки примут решение о создании коалиции в зависимости от размеров выплат внутри коалиции.

Свойства характеристической функции[править | править вики-текст]

  • Монотонность — свойство, при котором у больших (в смысле включения) коалиций выплаты больше: если A \sube B \rArr v(A) \le v(B).
  • Супераддитивность — свойство, при котором для любых двух непересекающихся коалиций A и B сумма их выгод по отдельности не больше их выгоды при объединении:
A \cap B= \emptyset \Rightarrow v(A \cup B) \ge v(A) + v(B)
  • Выпуклость — характеристическая функция является выпуклой:
v(A \cup B) + v(A \cap B) \ge v(A) + v(B)

Примеры игр[править | править вики-текст]

Простые игры — особый вид кооперативных игр, где все выплаты это 1 или 0, то есть коалиции либо «выигрывают», либо «проигрывают». Простая игра называется правильной, если:

v(A)=1-v(N \setminus A).

Значение этого: коалиция выигрывает тогда и только тогда, когда дополняющая коалиция (оппозиция) проигрывает.

Решение кооперативных игр[править | править вики-текст]

В соответствии с определением кооперативной игры, множество игроков N в совокупности обладает некоторым количеством определенного блага, которое надлежит разделить между участниками. Принципы этого деления и называются решениями кооперативной игры.

Решение может быть определено как для конкретной игры, так и для класса игр. Естественно, что наибольшей важностью обладают как раз те принципы, которые применимы в широком спектре случаев (то есть для обширного класса игр).

Решение может быть как однозначным (в этом случае для каждой игры решением является единственное распределение выигрышей), так и многозначным (когда для каждой игры могут быть определены несколько распределений). Примерами однозначных решений служат N-ядро и вектор Шепли, примерами многозначных — C-ядро и K-ядро.

Связь с некооперативными играми[править | править вики-текст]

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Петросян Л. А., Зенкевич Н.А., Семина Е.А. Теория игр: Учеб. пособие для ун-тов. — М.: Высш. шк., Книжный дом «Университет», 1998. — С. 304. — ISBN 5-06-001005-8, 5-8013-0007-4