Лазерная стереолитография

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Лазерная стереолитография (англ. Laser Stereolithography) — одна из технологий быстрого прототипирования.

Процесс стереолитографии

Основы технологии[править | править исходный текст]

Технология лазерной стереолитографии основана на фотоинициированной лазерным излучением или излучением ртутных ламп полимеризации фотополимеризующейся композиции (ФПК).

С помощью этой технологии спроектированный на компьютере трёхмерный объект выращивается из жидкой ФПК последовательными тонкими (0,1—0,2 мм) слоями, формируемыми под действием лазерного излучения на подвижной платформе, погружаемой в ванну с ФПК.

Лазерная стереолитография позволяет в кратчайшие сроки (от нескольких часов до нескольких дней) пройти путь от конструкторской или дизайнерской идеи до готовой модели детали.

В английской литературе обычно именуется кратко — SLA (сокращенно от Stereolithography). Этот метод стоит немного особняком от других, так как использует в качестве «строительного материала» не порошки, а фотополимеры в жидком состоянии. В емкость с жидким фотополимером помещается сетчатая платформа, на ней будет происходить выращивание прототипа.

Изначально платформа находится на такой глубине, чтобы ее покрывал тончайший слой полимера толщиной от 0.05 до 0.15мм — это и есть приблизительная толщина слоя в стереолитографии. Далее включается лазер, который воздействует на те участки полимера, которые соответствуют стенкам целевого объекта, вызывая их затвердевание. После этого вся платформа погружается чуть глубже, на величину, равную толщине слоя. Также в этот момент специальная щетка орошает участки, которые могли остаться сухими вследствие некоторого поверхностного натяжения жидкости. По завершению построения объект погружают в ванну со специальными составами для удаления излишков и очистки. И, наконец, финальное облучение светом для окончательного отвердевания. Как и многие другие методы 3D-прототипирования, SLA требует возведения поддерживающих структур, которые вручную удаляются по завершении строительства.

Необходимо понимать, что из-за выборочного отвердевания накладываются жесткие двусторонние ограничения на компоненты и технологию процесса. Например, чем гуще смола изначально, тем легче её перевести в полимерное состояние, но и тем хуже её гидромеханические качества. Чем мощнее введенный в смолу фотоинициатор, тем меньшее времени нужно слабому лазеру для засветки, но и тем меньшее время жизни у всего объёма смолы, так как он подвержен фоновой засветке. Именно золотая середина в технологии и компонентах является “ноу-хау” каждого производителя лазерных стереолитографов.

Устройство и принцип действия таких машин у всех производителей идентичны, поэтому в любой SLA-машине возможно применение любого расходного материала после соответствующей настройки. Одно из преимуществ 3D-печати методом SLA — скорость. Объекты возводятся в течения дня, хотя отдельные модели с особо сложной геометрией могут выращиваться до нескольких дней. Большинство SLA-машин работают с объектами размером примерно 50x50x60см, но есть и исключения. Бельгийская компания «Materialize» создала аппарат, способный создавать объекты размером до двух метров. Среди недостатков SLA обычно называют высокую стоимость как расходного материала.

Области применения[править | править исходный текст]

Пластиковые стереолитографические модели рабочих колес для водомётных движителей, изготовленные по ним восковые модели («восковки») и готовая металлическая отливка

См. также[править | править исходный текст]

Литература[править | править исходный текст]

  • Лазерные технологии обработки материалов: современные проблемы фундаментальных исследований и прикладных разработок — монография под ред. В.Я. Панченко, раздел «Лазерные технологии быстрого прототипирования и прямой фабрикации трехмерных объектов». - М.: Физматлит, 2009. - 664 с. - ISBN 978-5-9221-1023-5

Ссылки[править | править исходный текст]