Лежандр, Адриен Мари

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Адриен Мари Лежандр
Legendre.jpg
Карикатура на А. М. Лежандра (1820), единственный достоверный портрет учёного[1]
Дата рождения:

18 сентября 1752({{padleft:1752|4|0}}-{{padleft:9|2|0}}-{{padleft:18|2|0}})

Место рождения:

Париж

Дата смерти:

10 января 1833({{padleft:1833|4|0}}-{{padleft:1|2|0}}-{{padleft:10|2|0}}) (80 лет)

Место смерти:

Париж

Страна:

Франция

Научная сфера:

математика

Место работы:

Политехническая школа

Альма-матер:

Парижский университет

Адриен Мари Лежандр на Викискладе

Адриен Мари Лежа́ндр (фр. Adrien-Marie Legendre, 18 сентября 1752, Париж — 10 января 1833, там же) — французский математик.

Биография[править | править вики-текст]

Лежандр закончил Коллеж Мазарини, с 1775 года — преподаватель Военной школы в Париже.

Член Парижской Академии наук1783 года).

В годы Французской революции Лежандр, вместе с Лагранжем и Лапласом, активно участвовал в Комиссии по введению метрической системы, в частности, в измерении длины одного градуса между Дюнкерком и Барселоной для установления эталона метра.

1795: профессор Нормальной школы.

1799: заменил на посту экзаменатора Политехнической школы Лапласа, с которым он вместе преподавал ранее в Военной школе.

1816: профессор Политехнической школы.

Из-за какой-то бюрократической ошибки пенсия Лежандра была отменена в 1824 году, и остаток своих дней он прожил в нужде.

Скончался Лежандр в Париже 10 января 1833 года.

Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни. В честь Лежандра также названы:

Научная деятельность[править | править вики-текст]

В 1798 году выходит в свет «Опыт теории чисел» — фундаментальный труд, итог арифметических достижений XVIII века. Книга выдержала три переиздания ещё при жизни Лежандра. К сожалению, многие доказательства в книге были нестрогими или даже отсутствовали вовсе.

В этом труде Лежандр доказал (не вполне строго) квадратичный закон взаимности, высказанный ранее Эйлером, причём придал ему современную формулировку, и предложил «символы Лежандра». Пробелы в доказательстве позже заполнил Гаусс. Изложена полная теория непрерывных дробей и их применений для решения диофантовых уравнений.

Во втором издании Лежандр предложил (без доказательства) асимптотическую формулу для функции распределения простых чисел:

\pi(x) \approx \frac {x} {\ln{x} - 1,08366}

В последнем издании (1830) было также доказательство Великой теоремы Ферма для n = 5.

Лежандр обосновал и развил теорию геодезических измерений, продвинул сферическую тригонометрию. В области математического анализа им введены так называемые многочлены Лежандра, преобразование Лежандра и исследованы эйлеровы интегралы I и II рода. Лежандр доказал приводимость эллиптических интегралов к каноническим формам, нашёл их разложения в ряды, составил таблицы их значений.

В вариационном исчислении Лежандр установил признак существования экстремума.

Для среднего образования выдающееся значение имел его превосходный учебник «Начала геометрии» (1794), выдержавший несколько изданий при его жизни, множество переводов и, сверх того, посмертные переработки другими авторами. "Начала геометрии" послужили образцом для всех дореволюционных учебников по элементарной математике в России. Достоинства этого учебника не испортили даже безуспешные попытки автора доказать в этой книге пятый постулат Евклида. В разных изданиях книги Лежандр дал целых три доказательства V постулата, все ошибочные.

Лежандра преследовал какой-то злой рок — стоило ему сделать выдающееся открытие, как тут же оказывалось, что другой математик сделал то же самое немного раньше. Даже те его открытия, приоритет которых никто не оспаривал, часто в самом скором времени перекрывались чужими, более общими результатами. Например, по поводу авторства метода наименьших квадратов, которым Лежандр особенно гордился, он имел приоритетный спор с Гауссом, который открыл этот метод независимо и раньше Лежандра (1795), но опубликовал позже. Многолетние труды Лежандра по эллиптическим функциям были во многом обесценены после появления классических работ Абеля и Якоби.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Peter Duren Changing Faces: The Mistaken Portrait of Legendre (англ.) // Notices of the AMS. — American Mathematical Society, 2009. — № 56 (11). — С. 1440–1443. — ISSN 0002-9920.