Машина непрерывного литья заготовок

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Модель МНЛЗ
Карусельный механизм смены ковша над промежуточным ковшом. На каждой стороне карусели вес до 200т

МНЛЗ — машина непрерывного литья заготовок (или УНРС — установка непрерывной разливки стали). В настоящее время около 60 % отливаемых непрерывным литьем заготовок разливается на слябовых МНЛЗ. Жидкая сталь непрерывно заливается в водоохлаждаемую форму, называемую кристаллизатором. Перед началом заливки в кристаллизатор вводится специальное устройство с замковым захватом («затравка»), как дно для первой порции металла. После затвердевания металла затравка вытягивается из кристаллизатора, увлекая за собой формирующийся слиток. Поступление жидкого металла продолжается и слиток непрерывно наращивается. В кристаллизаторе затвердевают лишь поверхностные слои металла, образуя твердую оболочку слитка, сохраняющего жидкую фазу по центральной оси. Поэтому за кристаллизатором располагают зону вторичного охлаждения (ЗВО), называемую также второй зоной кристаллизации. В этой зоне в результате форсированного поверхностного охлаждения заготовка затвердевает по всему сечению. Этот процесс слиткообразования является способом получения слитков неограниченной длины. В этом случае по сравнению с разливкой в изложницы резко уменьшаются потери металла на обрезку концов слитков, которые, например, при литье спокойной стали составляют 15—25 %. Кроме того, благодаря непрерывности литья и кристаллизации, достигается полная равномерность структуры слитка по всей его длине.

Во время кристаллизации формирующийся слиток металла постоянно перемещается вверх-вниз относительно кристаллизатора посредством небольших цилиндров, расположенных в ручье. Это позволяет уменьшить количество трещин - дефектов. Вокруг каждого ручья создается сильное электромагнитное поле, которое позволяет формировать надлежащую кристаллическую структуру заготовки[источник не указан 177 дней].

Основными производителями непрерывнолитых слябов в мире являются Япония, США, КНР, Германия, Корея и Россия. На их долю приходится более двух третей мирового объема производства слябов. Сейчас (2013 г.) в мире насчитывается чуть более 500 слябовых МНЛЗ с общим числом ручьев свыше 700 единиц[источник не указан 177 дней].

Различают 4 конструкции МНЛЗ:

  • вертикальные;
  • криволинейные;
  • радиальные.
  • горизонтальные

По количеству ручьёв МНЛЗ разделяют на 1—7 ручьевые.

В зависимости от геометрии слитка МНЛЗ делятся на

  • слябовые;
  • блюмовые;
  • сортовые.

На нижнем рисунке показан подъёмно-поворотный стенд.

История[править | править исходный текст]

Идея непрерывного литья была выдвинута в середине XIX в. Г. Бессемером, который предлагал разливать жидкую сталь между двумя водоохлаждаемыми валками. Однако не только при том уровне техники, но и в настоящее время реализовать такую идею бесслитковой прокатки невозможно.

В 1943 г. Зигфрид Юнганс разработал подвижный кристаллизатор для разливки заготовок.

Первые полупромышленные (пилотные) установки появились сразу после окончания второй мировой войны в нескольких ведущих индустриальных странах. Так, опытная машина вертикального типа была сооружена в 1946 г. на заводе в г. Лоу Мур (Великобритания), в 1948 г. — на фирме «Бабкок и Уилкокс» (Бивер Фоле, США), в 1950 г. — на фирме Маннесманн АГ (Дуйсбург, Германия).

В СССР первая опытная машина непрерывной разливки стали вертикального типа ПН-1-2 ЦНИИЧерМет была сооружена в 1945 г. и предназначалась для отливки заготовок круглого и квадратного сечения (размер стороны квадрата и диаметра до 200 мм). Опыт, полученный при разливках на этой установке, позволил определить некоторые основные особенности технологического процесса разливки и связанные с ними требования к конструкции отдельных узлов машины. В 1947 г. была пущена экспериментальная машина непрерывного литья заготовок (МНЛЗ) ПН-3 ЦНИИЧерМет, предназначенная для исследований и разработки технологического процесса полунепрерывной разливки стали и специальных сплавов в заготовки мелких сечений.

Затем в 1948 г. была пущена установка ПН-4 ЦНИИЧерМет, предназначенная для исследований и разработки технологического процесса полунепрерывной разливки стали различных марок на слябы толщиной 200 мм и шириной 500 мм, а в 1949 г. — установка ГТН-5 ЦНИИЧерМет, позволявшая разливать слиток с максимальной толщиной 300 мм и шириной 900 мм. [2].

1947 год отмечен еще одним событием в непрерывном литье. 27 мая 1947 года была создана лаборатория бесслитковой прокатки и непрерывного литья, начальником которой был назначен М. С. Бойченко. В состав коллектива лаборатории вошли выдающиеся ученые Вениамин Вениаминович Фульмахт, Виктор Савельевич Рутес, Дмитрий Петрович Евтеев.

Конвейерный способ разливки стали впервые был практически осуществлен Михаилом Фёдоровичем Голдобиным на установке, смонтированной в 1949 г. на московском заводе «Серп и Молот». В машине имелись два горизонтальных конвейера, состоящие из стальных полуизложниц, которые образуют кристаллизатор длиной 9 м. Конвейер и заготовка двигались одновременно с одинаковой линейной скоростью. [2].

Конвейерная машина отливала заготовки размерами 120 х 120 и 140×140 мм с производительностью 25…35 т/час на которой в течение 5 лет было отлито 9500 т стали.

В 1952—1954 гг. в мартеновском цехе Бежецкого машиностроительного завода испытывалась наклонная опытно-промышленная установка проф. И. Я. Граната. При испытаниях было отлито около 4000 т заготовок сечением 250×250 мм при скорости отливки 0,8…1,1 м/мин. Наклонные установки требовали меньших по сравнению с вертикальными капитальных затрат и позволяли осуществить вторичное охлаждение на требуемой длине, но для них нужны были большие производственные площади, чем для вертикальных установок [2].

В 1947…48 гг. была введена в эксплуатацию экспериментальная установка завода Бабкок-Вилькокс производительностью 10…12 т/час и позднее — ряд опытных установок во многих странах (Англия — заводы Биера в Шеффилде и Лод-Мур в Брэдфорде; США — Стил-Корпорейшен; ФРГ — Маннесман; ГДР — завод Делен и др.).

В 1949 г. была создана машина 3игфрида Юнганса, внесшего ряд улучшений в конструкцию и режим работы кристаллизаторов. Так, например, им было применено возвратно-поступательное движение и смазка кристаллизатора различными маслами, как растительными, так и синтетическими.

В Советском Союзе в 1951 г. была пущена опытно-промышленная установка полунепрерывной разливки стали вначале на заводе «Красный Октябрь», а в 1953 г. и на Новотульском металлургическом заводе. [2]

С 1952 г. возвратно-поступательное движение кристаллизатора начинают применять на всех машинах непрерывного литья заготовок (МНЛЗ), кроме установок горизонтального типа.

В Японии и СССР промышленное освоение МНЛЗ началось в 1955 г. Тогда на заводе «Красное Сормово» заработала первая машина непрерывного литья заготовок, созданная под руководством академика И. П. Бардина, удостоенного за эту работу Ленинской премии, вместе со Смеляковым Н. Н., Командиным Н. Л., Коротковым К. П., Майоровым Н. П., Хрипковым А. В., Грицуном М.Д, Гурским Г. В., Казанским В. А.[1].

Начало 1970-х годов характеризуется широким промышленным внедрением машин непрерывной разливки слябовой заготовки. На смену низкоскоростным вертикальным МНЛЗ(УНРС) пришли радиальные и криволинейные машины, имеющие значительно большую скорость разливки.

30 июня 1960 года была пущена крупнейшая в мире на то время УНРС (установка непрерывной разливки стали) вертикального типа Донецкого металлургического завода.[2] На ней до 1970 г. была освоена разливка стали около 30 марок в слябы различного сечения, а общее количество литья возросло с 16,7 тыс. в 1960 г. и 117,4 тыс. т в 1961 г. до 247,8 тыс. т в 1965 г. и 391,1 тыс. т в 1970 г. На этой машине были проведены большой комплекс работ по отработке режимов разливки и охлаждения заготовок из различных марок стали, что дало исходные данные для проектирования и строительства в стране еще более крупных машин этого типа. Была разработана оригинальная система автоматизации, которая признана типовой. На этой установке был впервые опробован и внедрен в производство целый ряд принципиально новых технологических решений — разливка по способу «плавка на плавку», применение ребристых кристаллизаторов, разливка под слоем аморфного графита, использование новых типов дозаторных устройств, новые способы раскисления стали. Общая экономия от внедрения новой технологии непрерывной разливки стали и усовершенствования основных технологических узлов УНРС составила более 2 млн руб. в год. С участием Д. А. Дюдкина, А. М. Кондратюка и В. Г. Осипова было освоено литье более, чем девятнадцати марок стали на МНЛЗ [2]. Сегодня эта установка с колодцами глубиной до 29 м [2] выглядит морально устаревшей, но в 1956 году это было верхом изящества. О масштабах установки говорят цифры приточной вентиляции в 180000 м3/час [2]. Получение слябов из 140 — тонного ковша занимало от 77 до 90 минут [2]. Общая высота установки с учетом колодцев составляла 30 метров — высоту 10 этажного дома [2]. Тепловые расчеты установки были выполнены под руководством Лауреата Сталинской премии Сергея Михайловича Андоньева [2], известного своими работами по испарительному охлаждению металлургических печей.

Долгое время основным типом УНРС во всем мире были вертикальные установки. В последние годы все более широкое распространение находят радиальные и криволинейные установки. Первая в мире радиальная УНРС была создана в 1962 г. в Украинском институте металлов (УкрНИИМете) под руководством проф. В. Т. Сладкоштеева [2], а первая опытная одноручьевая сортовая установка МНЛЗ радиального типа была построена на заводе УЗТМ, г. Екатеринбург; за рубежом аналогичная установка была построена в 1963 г в Швейцарии [2]. На установку было получено А. С. СССР № 817395/22-2 от 2 февраля 1963 г. (Авторы В. Т. Сладкоштеев, М. А. Курицкий, Р. В. Потанин, В. И. Ахтырский, Б. А. Тофпенец.)

Установка была в 3-4 раза ниже вертикальной машины и имела криволинейный кристаллизатор с радиусом кривизны около 5 м.

В 1966 г. на заводе УЗТМ, г. Екатеринбург опытная МНЛЗ была реконструирована с целью обеспечения деформации заготовки до окончания ее затвердевания.[2] По разработанному УкрНИИМетом техническому заданию Гипросталью был выполнен проект и была построена на Руставском заводе в 1965 г. первая в СССР радиальная УНРС производительностью 220 тыс. т в год. [2]

В 1964 г. в мире было всего 5 УНРС радиального типа, а в 1970 г.- уже 149, то есть около 50 % их общего количества на то время. Радиальные и криволинейные УНРС и сегодня приняты в качестве основного типа установок на отечественных и зарубежных заводах. Их преимуществами по сравнению с вертикальными УНРС являются в три-четыре раза меньшая высота, возможность обслуживания общецеховыми грузоподъемными средствами, высокие скорости разливки, возможность по-лучения неограниченных по длине слитков, меньшие капитальные затраты на строительство. [2]

Первая в СССР опытная МНЛЗ горизонтального типа была построена в 1959 году на опытном заводе УкрНИИМета под руководством проф. В. Т. Сладкоштеева (впоследствии лауреата Государственной премии СССР) и проф. О. А. Шатагина (впоследствии лауреата Премии Совета Министров СССР) [2]. Опытно-промышленная МНЛЗ горизонтального типа была построена там же в 1958 году. На ней впервые в СССР были отлиты бронзовые заготовки диаметром 53 мм [2].

В 1974 году в конвертерном цехе комбината «Азовсталь» под руководством выдающегося металлурга и непрерывщика О. В. Носоченко были разлиты стали, легированные алюминием. Этим было положено начало разливкам не только низкоуглеродистых сталей обыкновенного качества, но и качественным, а впоследствии и легированным сталям. Мариупольцы блестяще доказали на практике абсурдность мнения, что непрерывной разливкой можно получать заготовки только из низкоуглеродистых сталей обыкновенного качества типа Ст.3…Ст. 5, в крайнем случае Стали 10… Стали 20.

В 1978 г. принята к серийному производству на липецком литейном заводе «Центролит» новая модель ЛНЛЧ-3 (линия непрерывного литья чугуна третьего поколения), с горизонтальной линией разливки. При вытягивании чугунной отливки производится вытягивание, например, на 50 мм вперед и немедленно на 10… 15 мм назад. Возвратное движение профиля в кристаллизаторе позволяет ликвидировать щели в разорвавшейся корочке затвердевающего чугунного профиля и тем самым предотвратить прорыв расплава из кристаллизатора, а кроме того за счет выравнивания температуры отливки предотвращается возможный отбел чугуна.

Первая в СССР опытно-промышленная двухручьевая сортовая МНЛЗ горизонтального типа для литья стали была построена в НПО «Тулачермет» совместно с УкрНИИМетом в 1979 году.

В 1983 году горизонтальные машины построены на Торезском заводе наплавочных твердых сплавов для присадочных прутков для сварки и наплавки из сплавов типа сормайт и стеллит с производительностью до 1000 т/год.

В 1986 году горизонтальные машины были установлены на киевском заводе «Ленинская кузница» для отливки алюминиевых бронз. На заводе Ленинская кузница" была построена и вторая горизонтальная машина для отливки алюминиевых бронз, что позволило одновременно получать восемь заготовок диаметром 8 мм и отливать до 2 тысяч тонн в год непрерывнолитых заготовок из алюминиевых бронз.

В 1988 году на Карагандинском металлургическом комбинате была построена горизонтальная машина для отливки стали, на которой был испытан кристаллизатор из новой марки бронзы [2].

Подсчитано, что прямая экономия энергоресурсов на каждую тонну полученной на МНЛЗ стальной заготовки составляет до 60 кг коксующегося угля, 52 кг нефти, 40  м³ природного газа, 9  м³ кислорода, 160 кВт*ч электроэнергии.

Оборудование и процесс[править | править исходный текст]

Схема установки непрерывного литья.
1 — Ковш подачи жидкого металла.
2 — Промежуточный ковш.
3 — Кристаллизатор.
4 — Заслонка.
5 — Стопор.
6 — Зона кристаллизации.
7 — Тянущие ралики.
8 — Зона начала кристаллизации.
9 — Подача охлаждающей воды.

МНЛЗ включает в себя в том числе сталеразливочный 1 и промежуточный 2 ковши, водоохлаждаемый кристаллизатор 3, систему вторичного охлаждения, устройства для вытягивания заготовки из криталлизатора, оборудования для резки и перемещения слитка.

После выпуска металла из сталеплавильного агрегата, доводки сплава по химическому составу и температуре на агрегате ковш-печь (АКП), сталеразливочный ковш перемещается литейным краном на поворотный стенд МНЛЗ. Поворотный стенд — вращающаяся конструкция с двумя позициями для установки ковшей. После опустошения сталеразливочного ковша в промежуточный ковш в процессе разливки, стенд поворачивается на 180° и полный, ранее установленный ковш переводится в позицию разливки в промежуточный ковш. Одновременно опустошённый ковш заменяется полным. Таким образом обеспечивается наличие расплавленного металла в промежуточном ковше.

После открытия шибера ковша 1 жидкий металл начинает поступать в промежуточный ковш 2. Промежуточный ковш является своего рода буфером между сталеразливочным ковшом и кристаллизатором 3. Уровень металла перед стопором разливки регулируется заслонкой 4. После открытия стопора 5 (стопорный механизм позволяет плавно регулировать поток металла в кристаллизатор, поддерживая в нём постоянный уровень) из промежуточного ковша металл поступает в кристаллизатор. Кристаллизатор представляет собой водоохлаждаемую конструкцию, которая при помощи сервоклапана совершает вертикальные колебания, для предотвращения застывания металла на стенках кристаллизатора и предотвращения образования трещин.

В зависимости от конструкции МНЛЗ размеры кристаллизатора могут варьироваться. В кристаллизаторе происходит застывание стенок формируемого слитка (например, сляба). Далее, под воздействием тянущих роликов 7 сляб попадает в зону вторичного охлаждения (криволинейный участок ручья), где на металл через форсунки разбрызгивается вода.

После выхода непрерывной заготовки на горизонтальный участок роликового ручья, её разрезают на куски (резка кислородным газовым резаком, дисковой пилой или ножницами). Газовый резак и пила работают по «летающему» принципу, — в процессе резания перемещается со скоростью, равной скорости движения заготовки, после завершения резания — быстро перемещается в исходную позицию начала резания для выполнения следующей фазы цикла резания.

Некоторые установки непрерывной разливки не имеют непрерывно действующих режущих устройств, в таких установках дальнейшая обработка непрерывной заготовки совмещается с последующей обработкой, например, установками волочения проволоки, либо, при небольших размерах сечения (10—30 мм), сворачивается в бухты для последующей переработки[источник не указан 184 дня].

Пуск литья, управление процессом и проблемы[править | править исходный текст]

Выход затравки из дугового участка ручья (до отделения)

Для пуска процесса непрерывного литья, перед открытием шибера на пром-ковше, на радиусный участок ручья заводится «затравка», таким образом в районе кристаллизатора образуется своего рода карман. После наполнения этой полости металлом начинается вытягивание «затравки». На конце радиусного участка расположен механизм отделения затравки. После отделения она отводится рольгангом на большей скорости, чем скорость разливки.

Преимущества МНЛЗ перед разливкой в изложницу[править | править исходный текст]

По сравнению с прежним методом разливки стали в изложницу при непрерывной разливке можно сократить не только время за счет исключения некоторых операций, но и капиталовложения (например, на сооружение обжимных станов). Непрерывная разливка обеспечивает значительную экономию металла вследствие уменьшения обрези и энергии, которая тратилась на подогрев слитка в нагревательных колодцах. Исключение нагревательных колодцев позволило в значительной степени избавиться от загрязнения атмосферы. По ряду других показателей: качеству металлопродукции, возможности механизации и автоматизации, улучшению условий труда непрерывная разливка также эффективнее традиционных способов. Но непрерывная разливка имеет и Отрицательные стороны. Стали некоторых марок, например кипящие, нельзя разливать по этому методу, малые объемы разливки сталей различных марок повышают их себестоимость, неожиданные поломки оказывают большое влияние на снижение общей производительности.

Усовершенствования[править | править исходный текст]

В настоящее время все большее распространение получает метод электромагнитного торможения потока стали, попадающей в кристаллизатор. Это дает возможность существенно снизить скорость движения потоков, ограничить их проникновение вглубь жидкой фазы заготовки, а также обеспечить их рациональное движение. Вероятно, в ближайшее время этот метод получит развитие в совокупности с использованием погружных стаканов оптимальной геометрической формы, которая будет создаваться для каждого конкретного случая.

Кристаллизатор МНЛЗ работает как теплообменник, задача которого состоит в быстром отводе тепла от стали, проходящей через него. К краю кристаллизатора корка отливки начинает утолщаться, при этом изнашивая поверхность кристаллизатора. Кроме того, диффузия меди из кристаллизатора приводит к появлению брака — трещин на поверхности отливок. Во многих случаях износ медной стенки кристаллизатора и захват меди отливкой могут быть предотвращены с помощью нанесения защитных покрытий на нижнюю часть кристаллизатора. В конце XX века для защиты активно применялись хромовые и никелевые покрытия. Во многих странах они превалируют и сейчас. Никель может наноситься различными способами и толщинами, обладает близким к меди коэффициентом теплопередачи. В начале XXI века началось активное внедрение технологий газотермического напыления для защиты плит кристаллизаторов МНЛЗ с помощью керамических, металлокерамических покрытий, покрытий из сплавов. Эти покрытия позволяют обеспечить еще лучшую защиту поверхностей кристаллизатора. Разработаны методы высокоскоростного газопламенного напыления покрытий, которые позволяют нанести металлокерамические материалы с превосходными противоэрозионными характеристиками и хорошей теплопередачей. Газотермические покрытия имеет смысл наносить на всю рабочую поверхность кристаллизатора. Из-за меньшего коэффициента теплопроводности металлокерамических покрытий становится возможным уменьшить и более точно контролировать скорость охлаждения мениска. Такой тип охлаждения часто называют «мягким», и он позволяет обеспечить более равномерное формирование слитка и более равномерный профиль температуры, что позитивно влияет на производительность кристаллизатора и качество литья.

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

2. Теоретические и практические основы проектирования машин непрерывного литья. Монография/ А.Г. Журило, Д.Ю. Журило, Ю.В. Моисеев. Х.: НТУ "ХПИ", 2013. - 174 с.

Ссылки[править | править исходный текст]