Машинное обучение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Машинное обучение (англ. Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения моделей, способных обучаться, и алгоритмов для их построения и обучения. Различают два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на выявлении закономерностей в эмпирических данных. Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний. Дедуктивное обучение принято относить к области экспертных систем, поэтому термины машинное обучение и обучение по прецедентам можно считать синонимами.

Машинное обучение находится на стыке математической статистики, методов оптимизации и дискретной математики, но имеет также и собственную специфику, связанную с проблемами вычислительной эффективности и переобучения. Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением информации (Information Extraction), интеллектуальным анализом данных (Data Mining).

Общая постановка задачи обучения по прецедентам[править | править вики-текст]

Имеется множество объектов (ситуаций) и множество возможных ответов (откликов, реакций). Существует некоторая зависимость между ответами и объектами, но она неизвестна. Известна только конечная совокупность прецедентов — пар «объект, ответ», называемая обучающей выборкой. На основе этих данных требуется восстановить зависимость, то есть построить алгоритм, способный для любого объекта выдать достаточно точный ответ. Для измерения точности ответов определённым образом вводится функционал качества.

Данная постановка является обобщением классических задач аппроксимации функций. В классических задачах аппроксимации объектами являются действительные числа или векторы. В реальных прикладных задачах входные данные об объектах могут быть неполными, неточными, нечисловыми, разнородными. Эти особенности приводят к большому разнообразию методов машинного обучения.

Способы машинного обучения[править | править вики-текст]

Так как раздел машинного обучения, с одной стороны, образовался в результате разделения науки о нейросетях на методы обучения сетей и виды топологий архитектуры сетей, а с другой, вобрал в себя методы математической статистики, то указанные ниже способы машинного обучения исходят из нейросетей. То есть базовые виды нейросетей, такие как перцептрон и многослойный перцептрон (а также их модификации) могут обучаться как с учителем, без учителя, с подкреплением, и активно. Но некоторые нейросети и большинство статистических методов можно отнести только к одному из способов обучения. Поэтому если нужно классифицировать методы машинного обучения в зависимости от способа обучения, то, касательно нейросетей, некорректно их относить к определенному виду, а правильнее классифицировать алгоритмы обучения нейронных сетей.

  1. Метод коррекции ошибки
  2. Метод обратного распространения ошибки
  • Обучение без учителя — для каждого прецедента задаётся только «ситуация», требуется сгруппировать объекты в кластеры, используя данные о попарном сходстве объектов, и/или понизить размерность данных:
  1. Альфа-система подкрепления
  2. Гамма-система подкрепления
  3. Метод ближайших соседей
  1. Генетический алгоритм.
  • Активное обучение — отличается тем, что обучаемый алгоритм имеет возможность самостоятельно назначать следующую исследуемую ситуацию, на которой станет известен верный ответ:
  • Обучение с частичным привлечением учителя (semi-supervised learning) — для части прецедентов задается пара «ситуация, требуемое решение», а для части — только «ситуация»
  • Трансдуктивное обучение (transduction) — обучение с частичным привлечением учителя, когда прогноз предполагается делать только для прецедентов из тестовой выборки
  • Многозадачное обучение (multi-task learning) — одновременное обучение группе взаимосвязанных задач, для каждой из которых задаются свои пары «ситуация, требуемое решение»
  • Многовариантное обучение (multiple-instance learning) — обучение, когда прецеденты могут быть объединены в группы, в каждой из которых для всех прецедентов имеется «ситуация», но только для одного из них (причем, неизвестно какого) имеется пара «ситуация, требуемое решение»

Классические задачи, решаемые с помощью машинного обучения[править | править вики-текст]

Типы входных данных при обучении[править | править вики-текст]

Типы функционалов качества[править | править вики-текст]

  • При обучении с учителем  — функционал качества может определяться как средняя ошибка ответов. Предполагается, что искомый алгоритм должен его минимизировать. Для предотвращения переобучения в минимизируемый функционал качества часто в явном или неявном виде добавляют регуляризатор.
  • При обучении без учителя — функционалы качества могут определяться по-разному, например, как отношение средних межкластерных и внутрикластерных расстояний.
  • При обучении с подкреплением — функционалы качества определяются физической средой, показывающей качество приспособления агента.

Практические сферы применения[править | править вики-текст]

Целью машинного обучения является частичная или полная автоматизация решения сложных профессиональных задач в самых разных областях человеческой деятельности.

Машинное обучение имеет широкий спектр приложений[источник не указан 326 дней]:

Сфера применений машинного обучения постоянно расширяется. Повсеместная информатизация приводит к накоплению огромных объёмов данных в науке, производстве, бизнесе, транспорте, здравоохранении. Возникающие при этом задачи прогнозирования, управления и принятия решений часто сводятся к обучению по прецедентам. Раньше, когда таких данных не было, эти задачи либо вообще не ставились, либо решались совершенно другими методами.

Литература[править | править вики-текст]

  • Айвазян С. А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: основы моделирования и первичная обработка данных. — М.: Финансы и статистика, 1983.
  • Айвазян С. А., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: исследование зависимостей. — М.: Финансы и статистика, 1985.
  • Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
  • Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
  • Журавлев Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
  • Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.
  • Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.
  • Hastie, T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. — 2nd ed. — Springer-Verlag, 2009. — 746 p. — ISBN 978-0-387-84857-0..
  • Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.
  • Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1983), Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company, ISBN 0-935382-05-4[1].
  • Vapnik V.N. Statistical learning theory. — N.Y.: John Wiley & Sons, Inc., 1998. [1]
  • Bernhard Schölkopf, Alexander J. Smola Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. — MIT Press, Cambridge, MA, 2002 ISBN 978-0-262-19475-4 [2]
  • I.H. Witten, E. Frank Data Mining: Practical Machine Learning Tools and Techniques (Second Edition). — Morgan Kaufmann, 2005 ISBN 0-12-088407-0 [3]
  • Liang Wang, Li Cheng, Guoying Zhao Machine Learning for Human Motion Analysis. — IGI Global, 2009. — 318 p. — ISBN 978-1-60566-900-7.

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]