Методы кодирования цифровых сигналов

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Форматы кодов[править | править исходный текст]

Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

  • Формат БВН (без возвращения к нулю) естественным образом соответствует режиму работы логических схем. Единичный бит передается в пределах такта уровень не меняется. Положительный перепад означает переход из 0 к 1 в исходном коде, отрицательный — от 1 к 0. Отсутствие перепадов показывает, что значения предыдущего и последующего битов равны. Для декодирования кодов в формате БВН необходимы тактовые импульсы, так как в его спектре не содержится тактовая частота. Соответствующий коду формата БВН сигнал содержит низкочастотные компоненты (при передаче длинных серий нулей или единиц перепады не возникают).
  • Формат БВН-1 (без возвращения к нулю с перепадом при передаче 1) является разновидностью формата БВН. В отличие от последнего в БВН-1 уровень не передает данные, так как и положительные и отрицательные перепады соответствуют единичным битам. Перепады сигнала формируются при передаче 1. При передаче 0 уровень не меняется. Для декодирования требуются тактовые импульсы.
  • Формат БВН −0 (без возвращения к нулю с перепадом при передаче 0) является дополнительным к БВН-1 (перепады соответствуют нулевым битам исходного кода). В многодорожечных системах записи цифровых сигналов вместе с кодом в формате БВН надо записывать тактовые импульсы. Возможным вариантом является запись двух дополнительных сигналов, соответствующих кодам в форматах БВН-1 и БВН-0. В одном из двух сигналов перепады происходят в каждом такте, что позволяет получить импульсы тактовой частоты.
  • Формат ВН (с возвращением к нулю) требует передачи импульса, занимающего только часть тактового интервала (например, половину), при одиночном бите. При нулевом бите импульс не формируется.
  • Формат ВН-П (с активной паузой) означает передачу импульса положительной полярности при единичном бите и отрицательной — при нулевом бите. Сигнал этого формата имеет в спектре компоненты тактовой частоты. Он применяется в ряде случаев для передачи данных по линиям связи.
  • Формат ДФ-0 (двухфазный со скачком фазы при передаче 0) соответствует способу представления, при котором перепады формируются в начале каждого такта. При единичных битах сигнал в этом формате меняется с тактовой частотой, то есть в середине каждого такта происходит перепад уровня. При передаче нулевого бита перепад в середине такта не формируется, то есть имеет место скачок фазы. Код в данном формате обладает возможностью самосинхронизации и не требует передачи тактовых сигналов.

Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

By Northwest (Serov, CMT)

Бинарное кодирование[править | править исходный текст]

Без возврата к нулю[править | править исходный текст]

Потенциальное кодирование, также называется кодированием без возвращения к нулю (NRZ). При передаче нуля он передает потенциал, который был установлен на предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (NRZI).

NRZ[править | править исходный текст]

Потенциальный код NRZ (перевёрнутый)

Для передачи единиц и нулей используются два устойчиво различаемых потенциала:
NRZ (прямой):

  • биты 0 представляются нулевым напряжением 0 (В);
  • биты 1 представляются значением U (В).

NRZ (перевёрнутый):

  • биты 0 представляются значением U (В);
  • биты 1 представляются нулевым напряжением 0 (В).

NRZI[править | править исходный текст]

Потенциальный код NRZI

При передаче последовательности единиц, сигнал, в отличие от других методов кодирования, не возвращается к нулю в течение такта. То есть смена сигнала происходит при передаче единицы, а передача нуля не приводит к изменению напряжения.

Достоинства метода NRZ:

— Простота реализации.

— Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов).

— Основная гармоника f0 имеет достаточно низкую частоту (равную N/2 Гц, где N — битовая скорость передачи дискретных данных [бит/с]), что приводит к узкому спектру.

Недостатки метода NRZ:

— Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.

— Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей. Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

Манчестерское кодирование[править | править исходный текст]

Манчестерское кодирование

При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому, а ноль — обратным перепадом (по стандарту IEEE 802.3, хотя по Д.Е. Томасу кодирование происходит наоборот). В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает хорошими самосинхронизирующими свойствами. У манчестерского кода нет постоянной составляющей (меняется каждый такт), а основная гармоника в худшем случае (при передаче последовательности единиц или нулей) имеет частоту N Гц, а в лучшем случае (при передаче чередующихся единиц и нулей) — N/2 Гц, как и у NRZ. В среднем ширина спектра при манчестерском кодировании в два раза шире чем при NRZ кодировании.

Дифференциальное манчестерское кодирование[править | править исходный текст]

Дифференциальное манчестерское кодирование

При дифференциальном манчестерском кодировании в течение битового интервала (времени передачи одного бита) уровень сигнала может меняться дважды. Обязательно происходит изменение уровня в середине интервала, этот перепад используется для синхронизации. Получается, что при передаче нуля в начале битового интервала происходит перепад уровней, а при передаче единицы такой перепад отсутствует.

Тринарное кодирование[править | править исходный текст]

RZ (c возвратом к нулю)[править | править исходный текст]

То есть каждый бит передается 3-мя уровнями напряжения. Поэтому требует в 2 раза больше скорости по сравнению с обычной скоростью. Это квазитроичный код, то есть изменение сигнала происходит между 3-мя уровнями.

Биполярный код AMI[править | править исходный текст]

Биполярный код AMI

AMI-код использует следующие представления битов:

  • биты 0 представляются нулевым напряжением (0 В);
  • биты 1 представляются поочерёдно значениями -U или +U (В).

AMI-код обладает хорошими синхронизирующими свойствами при передаче серий единиц и сравнительно прост в реализации. Недостатком кода является ограничение на плотность нулей в потоке данных, поскольку длинные последовательности нулей ведут к потере синхронизации. Используется в телефонии уровня передачи данных, когда используются потоки мультиплексирования.

HDB3[править | править исходный текст]

Код HDB3 исправляет любые 4 подряд идущие нули в исходные последовательности. Правило формирования кода следующее: каждые 4 нуля заменяются 4 символами в которых имеется хотя бы один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Для замены используются два способа: 1)если перед заменой исходный код содержал нечётное число единиц то используется последовательность 000V, если чётное то 100V

V-сигнал единицы запрещённого для данного сигнала полярности

Тоже что и AMI, только кодирование последовательностей из четырех нулей заменяется на код -V, 0, 0, -V или +V, 0, 0, +V — в зависимости от предыдущей фазы сигнала.

MLT-3[править | править исходный текст]

MLT-3 Multi Level Transmission — 3 (многоуровневая передача) — метод кодирования, использующий три уровня сигнала. Метод основывается на циклическом переключении уровней -U, 0, +U. Единице соответствует переход с одного уровня сигнала на следующий. Так же как и в методе NRZI при передаче «нуля» сигнал не меняется. В случае наиболее частого переключения уровней (длинная последовательность единиц) для завершения цикла необходимо четыре перехода. Это позволяет вчетверо снизить частоту несущей относительно тактовой частоты, что делает MLT-3 удобным методом при использовании медных проводов в качестве среды передачи. Метод разработан Cisco Systems для использования в сетях FDDI на основе медных проводов, известных как CDDI. Также используется в Fast Ethernet 100BASE-TX.

Тетрарное кодирование[править | править исходный текст]

Потенциальный код 2B1Q[править | править исходный текст]

Потенциальный код 2B1Q

Код 2B1Q передает пару бит за один битовый интервал. Каждой возможной паре в соответствие ставится свой уровень из четырех возможных уровней потенциала. Паре
00 соответствует потенциал −2.5 В,
01 соответствует −0.833 В,
11 — +0.833 В,
10 — +2.5 В.

Достоинство метода 2B1Q: Сигнальная скорость у этого метода в два раза ниже, чем у кодов NRZ и AMI, а спектр сигнала в два раза уже. Следовательно с помощью 2B1Q-кода можно по одной и той же линии передавать данные в два раза быстрее.

Недостаток метода 2B1Q: Реализация этого метода требует более мощного передатчика и более сложного приемника, который должен различать четыре уровня.

См. также[править | править исходный текст]

Ссылки[править | править исходный текст]