Методы экологического мониторинга

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В зависимости от точности результатов, которые необходимо получить при проведении мониторинга по тому или иному компоненту, явлению, процессу, от среды, в которой проходят исследования, доступных финансовых и других средств, используют различные методы мониторинга.

Дистанционные методы[править | править вики-текст]

Как известно, первые автоматические системы слежения за параметрами внешней среды были созданы в военных и космических программах. В 1950-е гг. в системе ПВО США уже использовали семь эшелонов плавающих в Тихом океане автоматических буев, но самая впечатляющая автоматическая система по контролю качества окружающей среды была, несомненно, реализована в «Луноходе». Одним из основных источников данных для экологического мониторинга являются материалы дистанционного зондирования (ДЗ). Они объединяют все типы данных, получаемых с носителей:

  • космические (пилотируемые орбитальные станции, корабли многоразового использования, автономные спутниковые съемочные системы и т. п.);
  • авиационного базирования (самолеты, вертолеты и микроавиационные радиоуправляемые аппараты) и составляют значительную часть дистанционных данных (remotely sensed data) как антонима контактных (прежде всего наземных) видов съемок, способов получения данных измерительными системами в условиях физического контакта с объектом съемки;
  • к неконтактным (дистанционным) методам съемки, помимо аэрокосмических, относятся разнообразные методы морского (наводного) и наземного базирования, включая, например, фототеодолитную съемку, сейсмо, электромагниторазведку и иные методы геофизического зондирования недр, гидроакустические съемки рельефа морского дна с помощью гидролокаторов бокового обзора, иные способы, основанные на регистрации собственного или отраженного сигнала волновой природы.

Аэрокосмические[править | править вики-текст]

Аэрокосмические (дистанционные) методы экологического мониторинга включают систему наблюдения при помощи самолетных, аэростатных средств, спутников и спутниковых систем, а также систему обработки данных дистанционного зондирования[1].

Для космического экологического мониторинга целесообразно ориентироваться прежде всего на полярно-орбитальные метеорологические спутники, как на отечественные аппараты (спутники типа «Метеор», «Океан» и «Ресурс»), так и на американские спутники серий NOAA, Landsat и SPOT. Остановимся на кратких характеристиках указанных спутников [2].

Американские метеорологические спутники серии NOAA снабжены многозональной оптической и ИК аппаратурой, а именно радиометром высокого разрешения AVHRR (Advanced Very High Resolution Radiometer). Космические аппараты NOAA запускаются на полярные орбиты высотой порядка 700 км над поверхностью Земли с наклонением 98,89 градусов. Радиометр высокого разрешения ведет съемки поверхности Земли в пяти спектральных диапазонах. Космические съемки проводятся с пространственным разрешением 1100 м и обеспечивают полосу обзора шириной 2700 км.

Российские спутники серии «Ресурс» принадлежат Федеральной службе России по гидрометеорологии и мониторингу природной среды (Росгидромет). Они обеспечивают получение многозональной космической информации высокого и среднего разрешения с помощью двух сканеров видимого и ближнего инфракрасного диапазонов.

Космическая гидрометеорологическая система «Метеор», также принадлежащая Росгидромету, обеспечивает глобальный экологический мониторинг территории России. Параметры орбиты спутника «Метеор»: приполярная круговая орбита высотой около 1200 км. Комплекс научной аппаратуры позволяет оперативно 2 раза в сутки получать изображения облачности и подстилающей поверхности в видимом и инфракрасном диапазонах, данные о температуре и влажности воздуха, температуре морской поверхности и облаков. Осуществляются также мониторинг озоносферы и геофизический мониторинг. В состав бортового комплекса спутника входят несколько сканирующих ИК-радиометров и сканирующая ТВ-аппаратура с системой запоминания данных на борту для глобального обзора и передачи данных на АППИ. Российская космическая система «Океан» обеспечивает получение радиолокационных, микроволновых и оптических изображений земной поверхности в интересах морского судоходства, рыболовства и освоения шельфовых зон Мирового океана. Одной из основных задач спутника является освещение ледовой обстановки в Арктике и Антарктике, обеспечение проводки судов в сложных ледовых условиях. Параметры орбиты спутника: приполярная круговая орбита высотой 600—650 км. Поток информации в условиях облачности и в любое время суток обеспечивается радиолокатором РЛС БО и системой сбора информации от автономных морских и ледовых станций «Кондор». В состав комплекса бортовой аппаратуры спутника «Океан-01» входят СВЧ-радиометры Р-600 и Р-255, сканирующий СВЧ-радиометр Дельта-2, трассовый поляризационный спектрорадиометр «Трассер», а также комплекс оптической сканирующей аппаратуры.

Спутниковые данные дистанционного зондирования позволяют решать следующие задачи контроля состояния окружающей среды:

  1. Определение метеорологических характеристик: вертикальные профили температуры, интегральные характеристики влажности, характер облачности и т. д.);
  2. Контроль динамики атмосферных фронтов, ураганов, получение карт крупных стихийных бедствий;
  3. Определение температуры подстилающей поверхности, оперативный контроль и классификация загрязнений почвы и водной поверхности;
  4. Обнаружения крупных или постоянных выбросов промышленных предприятий;
  5. Контроль техногенного влияния на состояние лесопарковых зон;
  6. Обнаружение крупных пожаров и выделение пожароопасных зон в лесах;
  7. Выявление тепловых аномалий и тепловых выбросов крупных производств и ТЭЦ в мегаполисах;
  8. Регистрация дымных шлейфов от труб;
  9. Мониторинг и прогноз сезонных паводков и разливов рек;
  10. Обнаружение и оценка масштабов зон крупных наводнений;
  11. Контроль динамики снежных покровов и загрязнений снежного покрова в зонах влияния промышленных предприятий.

Основной полезный груз спутника — панхроматическая оптико-электронная система, позволяющая получать изображения с пространственным разрешением 1 м. Спутник может производить высокодетальную съемку одного и того же участка местности каждые три дня, получать несколько снимков одного и того же сюжета на одном витке. Приведём ряд распределения спектральных каналов и области применения этих каналов:

1 канал (голубой):

  • наиболее чувствителен к атмосферным газам, и, следовательно, изображение может быть малоконтрастным;
  • имеет наибольшую водопроницаемость (длинные волны больше поглощаются), то есть оптимален для выявления подводной растительности, факелов выбросов, мутности воды и водных осадков;
  • полезен для выявления дымовых факелов (так как короткие волны легче рассеиваются маленькими частицами);
  • хорошо отличает облака от снега и горных пород, а также голые почвы от участков с растительностью.

2 канал (зеленый):

  • чувствителен к различиям в мутности воды, осадочным шлейфам и факелам выбросов;
  • охватывает пик отражательной способности поверхностей листьев, может быть полезен для различения обширных классов растительности;
  • также полезен для выявления подводной растительности.

3 канал (красный):

  • чувствителен в зоне сильного поглощения хлорофилла, то есть хорошо распознает почвы и растительность;
  • чувствителен в зоне высокой отражательной способности для большинства почв;
  • полезен для оконтуривания снежного покрова.

4 канал (ближний инфракрасный):

  • различает растительное многообразие;
  • может быть использован для оконтуривания водных объектов и разделения сухих и влажных почв, так как вода сильно поглощает ближние инфракрасные волны.

5 канал (средний или коротковолновый инфракрасный):

  • чувствителен к изменению содержания воды в тканях листьев (набухаемости);
  • чувствителен к варьированию влаги в растительности и почвах (отражательная способность уменьшается при возрастании содержания воды);
  • полезен для определения энергии растений и отделения суккулентов от древесной растительности;
  • особенно чувствителен к наличию/отсутствию трехвалентного железа в горных породах (отражательная способность возрастает при увеличении количества трехвалентного железа);
  • отличает лед и снег (светлый тон) от облаков (темный тон).

6 канал (длинноволновый инфракрасный или тепловой):

  • датчики предназначены для измерения температуры излучающей поверхности от −100оС до 150оС;
  • подходит для дневного и ночного использования;
  • применение тепловой съемки: анализ влажности почв, типов горных пород, выявление теплового загрязнения воды, бытового скопления тепла, источников городского производства тепла, инвентаризация живой природы, выявление геотермальных зон.

7 канал (средний, или коротковолновый инфракрасный):

  • совпадает с полосой поглощения излучения гидроминералами (глинистые сланцы, некоторые оксиды и сульфаты), благодаря чему они выглядят темными;
  • полезен для литологической съемки;
  • как и 5-й канал, чувствителен к варьированию влаги в растительности и почвах.

8 канал (панхроматический — 4,3,2):

  • наиболее типичная комбинация каналов, используемая в дистанционном зондировании для анализа растительности, зерновых культур, землепользования и водно-болотных угодий (wetlands).

Компьютерные методы обработки спутниковых данных[править | править вики-текст]

Целью обработки данных дистанционного зондирования (ДЗ) является получение снимков или изображений с требуемыми радиометрическими и геометрическими характеристиками. Рассмотрим основные этапы обработки данных. В общем случае обработка данных дистанционного зондирования включает три этапа:

  1. предварительная обработка — прием спутниковых данных, запись их на магнитный носитель, декодировка и корректировка, преобразование данных непосредственно в изображение или космический снимок или в форматы, удобные для последующих видов обработки;
  2. первичная обработка — исправление искажений, вызванных нестабильностью работы космического аппарата и датчика, а также географическая привязка изображения с наложением на него сетки координат, изменение масштаба изображения и представление изображения в необходимой географической проекции (геокодирование);
  3. вторичная (тематическая) обработка — цифровой анализ с применением статистических методов обработки, визуальное дешифрирование и интерпретация в интерактивном или полностью автоматизированном режиме.


Первый и второй этапы обработки в настоящее время могут быть выполнены на борту космического аппарата.

Многозональная съемка ведется многие годы, и исследователи накопили большой объём эмпирических данных. Уже хорошо известно, какие соотношения яркости в различных зонах спектра соответствуют растительности, обнаженной почве, водным поверхностям, урбанизированным территориям и другим распространенным типам ландшафта, существуют библиотеки спектров различных природных образований. Выразив эти соотношения в виде линейных комбинаций различных зон, можно получать так называемые индексы. Так как многие современные системы дистанционного зондирования Земли осуществляют съемку в видимой красной и ближней инфракрасной частях спектра, то распространенным методом является вычисление нормализованного вегетационного индекса (NDVI). Нормализованный вегетационный индекс показывает наличие и состояние растительности по соотношению отраженных энергий в 2 спектральных каналах. Вычисляется по следующей формуле: NDVI=NIR-RED/NIR+RED, где NIR — отражение в ближней инфракрасной области спектра; RED — отражение в красной области спектра. Эта зависимость основана на различных спектральных свойствах хлорофилла в видимом и ближнем ИК диапазонах. Вегетационные индексы можно рассматривать как промежуточный этап при переходе от эмпирических показателей к реальным физическим свойствам растительного покрова. Часто вычисляют универсальные и территориально-привязанные индексы: LAI — индекс листовой поверхности или FPAR — индекс фотосинтетической активной радиации, поглощаемый растительностью и пр. Индекс LAI можно измерить в натурных условиях. В настоящее время в Интернет ежемесячно публикуются растровые изображения LAI (пространственное разрешение 250 м) на весь мир. Эти данные в сочетании с методами классификации мультиспектральных изображений могут значительно повысить достоверность при обработке изображений в экспертных системах, учитывающих множество различной информации.

Как известно, антропогенное воздействие на окружающую среду приводит к возникновению масштабных трудноразрешимых противоречий между интересами развития производства и сохранением природы, поскольку в результате интенсивного использования природных ресурсов происходит разрушение природных систем и интенсивное загрязнение среды. Ещё в Стокгольме на Первой Международной конференции ООН по оценке состояния природной среды в 1972 г. было признано, что экологическое состояние природной среды в промышленных странах стало угрожать не только здоровью населения, но и самому существованию человечества. Решение этих проблем, возникающих в связи с катастрофическим ухудшением окружающей природной среды, занимает сейчас центральное место при выработке стратегии экологически устойчивого социально-экономического развития промышленно развитых стран, в том числе и России. В последние годы в круг фундаментальных исследований проблем экологии территории России широко вовлечены космические методы контроля состояния экосистем.

Появление глобальной компьютерной сети Интернет и разработка передовых информационных технологий открыли новый этап развития космического экологического мониторинга. Особенностью нового этапа является широкое использование телекоммуникационной инфраструктуры, а также гипертекстовых и интерактивных информационных технологий, которые чрезвычайно перспективны в дистанционном мониторинге состояния окружающей среды. Актуальной является также проблема интегрирования национальных информационных ресурсов по окружающей среде, создание региональных баз данных и расширение электронных коллекций по результатам космического экологического мониторинга. Развитие технологий наблюдения из космоса, создание инфраструктур спутникового экологического мониторинга регионов России наряду с разработкой экологической системы контроля в реальном масштабе времени призваны сыграть ключевую роль в обеспечении безопасности окружающей среды и устойчивого развития экономики России.

В связи с этим создаются Центры космического мониторинга (ЦКМ), которые осуществляют оперативный контроль состояния окружающей среды и природных ресурсов (например, Институт солнечно-земной физики СО РАН, г. Иркутск), создают многоуровневые информационные системы пространственно-временного мониторинга состояния окружающей среды, включающие технические и программные средства сбора, обработки, анализа и хранения спутниковой информации.

Во всем мире исследования Земли из космоса приобретают всеобъемлющий характер. Наиболее информативным методом для решения задач дистанционного исследования поверхности Земли из космоса является использование и тематический анализ изображений, полученных приборными комплексами различных частотных диапазонов, установленных на космических аппаратах. Целый ряд спутников, оснащенных приборами дистанционного зондирования (радиолокаторами, скаттерометрами, радиометрами и оптической техникой), выведены на орбиту специально для получения разносторонней геофизической информации, необходимой для оценки состояния окружающей среды и для природо-ресурсных исследований.

Наземные[править | править вики-текст]

Наземные методы экологического мониторинга.

Физико-химические методы[править | править вики-текст]

-Качественные методы. Позволяют определить, какое вещество находится в испытуемой пробе. Например на основе хроматографии[3].
-Количественные методы.
-Гравиметрический метод. Суть метода состоит в определении массы и процентного содержания какого-либо элемента, иона или химического соединения, находящегося в испытуемой пробе.
-Титриметрический (объемный) метод. В этом виде анализа взвешивание заменяется измерением объёмов, как определяемого вещества, так и реагента, используемого при данном определении. Методы титриметрического анализа разделяют на 4 группы: а) методы кислотно-основного титрования; б) методы осаждения; в) методы окисления-восстановления; г) методы комплексообразования.
-Колориметрические методы. Колориметрия — один из наиболее простых методов абсорбционного анализа. Он основан на изменении оттенков цвета исследуемого раствора в зависимости от концентрации. Колориметрические методы можно разделить на визуальную колориметрию и фотоколориметрию.
-Экспресс-методы. К экспресс методам относятся инструментальные методы, позволяющие определить загрязнения за короткий период времени. Эти методы широко применяются для определения радиационного фона, в системе мониторинга воздушной и водной среды.
-Потенциометрические методы основаны на изменении потенциала электрода в зависимости от физико-химических процессов, протекающих в растворе. Их разделяют на: а) прямую потенциометрию (ионометрию); б) потенциометрическое титрование.

Методы биологического мониторинга[править | править вики-текст]

  1. Биоиндикация — метод, который позволяет судить о состоянии окружающей среды по факту встречи, отсутствия, особенностям развития организмов-биоиндикаторов[4]. Биоиндикаторы — организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Условия, определяемые с помощью биоиндикаторов, называются объектами биоиндикации.
  2. Биотестирование — метод, позволяющий в лабораторных условиях оценить качество объектов окружающей среды с помощью живых организмов.
  3. Оценка компонентов биоразнообразия — является совокупностью методов сравнительного анализа компонентов биоразнообразия[5].

Методы статистической и математической обработки данных[править | править вики-текст]

Для обработки экомониторинговых данных используются методы вычислительной и математической биологии (в том числе и математическое моделирование), а также широкий спектр информационных технологий[6].

Географические информационные системы[править | править вики-текст]

ГИС является отражением общей тенденции привязки экологических данных к пространственным объектам. Как считают некоторые специалисты, дальнейшая интеграция ГИС и экологического мониторинга приведёт к созданию мощных ЭИС (экологических информационных систем) с плотной пространственной привязкой.

Литература[править | править вики-текст]

  1. Виноградов Б. В. Аэрокосмический мониторинг экосистем. — М.: Наука, 1984. — 320 с.
  2. Sputnik
  3. Майстренко В. Н., Хамитов Р. З., Будников Г. К. Эколого-аналитический мониторинг супертоксикантов. — М.: Химия, 1996. — 319 с.
  4. Шитиков В. К., Розенберг Г. С., Зинченко Т. Д. Количественная гидроэкология: методы системной идентификации. — Тольятти: ИЭВБ РАН, 2003. — 463 с.
  5. Горшков М. В. Экологический мониторинг. Учеб. пособие. — Владивосток: Изд-во ТГЭУ, 2010. 313 с.
  6. Пузаченко Ю. Г. Математические методы в экологических и географических исследованиях. М.: Академия, 2004. — 406 с.