Метод Крамера

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Ме́тод Кра́мера (правило Крамера) — способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704—1752), предложившего этот метод в 1750 г.[1]

Описание метода[править | править вики-текст]

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

\begin{cases}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1\\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots\cdots\\ 
a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n\\
\end{cases}

с определителем матрицы системы  \Delta , отличным от нуля, решение записывается в виде

x_i=\frac{1}{\Delta}\begin{vmatrix} 
a_{11} & \ldots & a_{1,i-1} & b_1  & a_{1,i+1} & \ldots & a_{1n} \\
a_{21} & \ldots & a_{2,i-1} & b_2 & a_{2,i+1} & \ldots & a_{2n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1,1} & \ldots & a_{n-1,i-1} & b_{n-1} & a_{n-1,i+1} & \ldots & a_{n-1,n} \\
a_{n1} & \ldots & a_{n,i-1} & b_n & a_{n,i+1} & \ldots & a_{nn} \\
\end{vmatrix}

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

(c_1x_1+c_2x_2+\dots+c_nx_n)\cdot\Delta = -\begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n} & b_1\\
a_{21} & a_{22} & \ldots & a_{2n} & b_2\\
\ldots & \ldots & \ldots & \ldots & \ldots\\
a_{n1} & a_{n2} & \ldots & a_{nn} & b_n\\
c_{1}  & c_{2}  & \ldots & c_{n}  & 0\\
\end{vmatrix}

В этой форме метод Крамера справедлив без предположения, что \Delta отличен от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b_1,b_2,...,b_n и x_1,x_2,...,x_n, либо набор c_1,c_2,...,c_n состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

Пример[править | править вики-текст]

Система линейных уравнений с вещественными коэффициентами:

\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1\\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2\\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3\\
\end{cases}

Определители:

\Delta=\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{vmatrix},\ \ \Delta_1=\begin{vmatrix}
b_1 & a_{12} & a_{13} \\
b_2 & a_{22} & a_{23} \\
b_3 & a_{32} & a_{33} \\
\end{vmatrix},\ \



\Delta_2=\begin{vmatrix}
a_{11} & b_1 & a_{13} \\
a_{21} & b_2 & a_{23} \\
a_{31} & b_3 & a_{33} \\
\end{vmatrix},\ \ \Delta_3=\begin{vmatrix}
a_{11} & a_{12} & b_1 \\
a_{21} & a_{22} & b_2 \\
a_{31} & a_{32} & b_3 \\
\end{vmatrix}

В определителях столбец коэффициентов при соответствующей неизвестной заменяется столбцом свободных членов системы.

Решение:

x_1=\frac{\Delta_1}{\Delta},\ \ x_2=\frac{\Delta_2}{\Delta},\ \ x_3=\frac{\Delta_3}{\Delta}

Пример:

\begin{cases}
2x_1 + 5x_2 + 4x_3 = 30\\
x_1 + 3x_2 + 2x_3 = 150\\
2x_1 + 10x_2 + 9x_3 = 110\\
\end{cases}

Определители:

\Delta=\begin{vmatrix}
2 & 5 & 4 \\
1 & 3 & 2 \\
2 & 10 & 9 \\
\end{vmatrix}=5,\ \ \Delta_1=\begin{vmatrix}30&5&4\\150&3&2\\
110 & 10 & 9 \\
\end{vmatrix}=-760,\ \



\Delta_2=\begin{vmatrix}
2 & 30 & 4 \\
1 & 150 & 2 \\
2 & 110 & 9 \\
\end{vmatrix}=1350,\ \ \Delta_3=\begin{vmatrix}
2 & 5 & 30 \\
1 & 3 & 150 \\
2 & 10 & 110 \\
\end{vmatrix}=-1270.

x_1=-\frac{760}{5}=-152,\ \ x_2=\frac{1350}{5}=270,\ \ x_3=-\frac{1270}{5}=-254

Вычислительная сложность[править | править вики-текст]

Метод Крамера требует вычисления n+1 определителей размерности n\times n. При использовании метода Гаусса для вычисления определителей, метод имеет сложность по элементарным операциям сложения-умножения порядка O(n^4), что сложнее чем метод Гаусса при прямом решении системы. Поэтому метод, с точки зрения затрат времени на вычисления, считался непрактичным. Однако, в 2010 году было показано, что метод Крамера может быть реализован со сложностью O(n^3), сравнимой со сложностью метода Гаусса[2].

Литература[править | править вики-текст]

  • Мальцев А. И. Основы линейной алгебры. — Изд. 3-е, перераб., М.: «Наука», 1970. — 400 c.

Примечания[править | править вики-текст]

  1. Cramer, Gabriel. Introduction à l'Analyse des lignes Courbes algébriques (фр.) 656–659. Geneva: Europeana (1750). Проверено 18 мая 2012.
  2. Ken Habgood and Itamar Arel. 2010. Revisiting Cramer's rule for solving dense linear systems. In Proceedings of the 2010 Spring Simulation Multiconference (SpringSim '10)

См. также[править | править вики-текст]