Модель Блэка

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В финансовой математике, модель Блэка (известная также как модель Black-76) является разновидностью модели ценообразования опционов Блэка–Шоулза. Она имеет непосредственные приложения в ценообразовании облигационных опционов, "кэп" и "флор" соглашений, свопционов. Модель впервые приведена в статье Фишера Блэка в 1976.

Модель Блэка может быть обобщена на класс моделей известный как форвадные логнормальные модели, также известные как модели рынка LIBOR.

Формула Блэка[править | править исходный текст]

Формула Блэка подобна формуле Блэка-Шоулза для оценки фондовых опционов, за исключением наличной цены базового актива, которая заменяется на дисконтную цену фьючерса F.

Предположим, что существует константа безрисковой процентной ставки r, а цена фьючерса F(t) на определённый базовый актив имеет логнормальное распределение с параметром волатильности σ. Тогда формула Блэка устанавливает цену на европейский "колл" опцион со сроком погашения T на фьючерс с ценой исполнения K и датой поставки T' (где T' \geq T):

 c = e^{-r T} [FN(d_1) - KN(d_2)]

Соответствующая цена "пут" опциона:

 p = e^{-r T} [KN(-d_2) - FN(-d_1)]

где

 d_1 = \frac{\ln(F/K) + (\sigma^2/2)T}{\sigma\sqrt{T}}
 d_2 = \frac{\ln(F/K) - (\sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T},

а N(.) — кумулятивное нормальное распределение.

Отметим, что T' не возникает в формуле, даже если он больше T. Это следствие того, что фьючерсы пересчитываются по рынку и, следовательно, выплата происходит при исполнении опциона. Если мы рассмотрим опцион на форвардный контракт, истекающий в момент T' > T, то выплата не произойдёт до момента T'. Таким образом, коэффициент дисконтирования e^{-rT} заменяется на e^{-rT '}, так как необходимо принять во внимание стоимость денег с учётом фактора времени. Различие в двух приведённых случаях из вывода формулы, приведённого ниже.

Следствия и допущения[править | править исходный текст]

Формула Блэка может быть легко выведена с использованием формулы Маграбе, которая в свою очередь является простым, но полезным, применением формулы Блэка-Шоулза.

Выплата по "колл" опциону на фьючерс равна max (0, F(T) - K). Мы можем рассматривать обменный опцион (опцион Маграбе), рассматривая e^{-r(T-t)}F(t) как первый актив, а как второй безрисковое погашение облигации в $1 в момент времени T. Тогда "колл" опцион исполняется в момент T, когда первый актив ценнее, чем K безрисковых облигаций. С такими активами будут выполнены предположения формулы Маграбе.

Единственное, что остаётся проверить, это то, что первый актив, на самом деле является активом. Это можно видеть, если рассмотреть портфель, сформированный в момент 0 посредством лонга форвардного контракта с датой поставки T и шорта F(0) безрисковых облигаций. Отметим, что при определённой процентной ставке, форвардные и фьючерсные цены равны, так что тут нет неоднозначности. Затем в любой момент t вы можете произвести зачёт облигации для форвардного контракта, шортируя другой форвард с такой же датой поставки, получив разницу цен форвардов, но дискутируя с прежним значением e^{-r(T-t)}[F(t) - F(0)]. Ликвидация F(0) безрисковых облигаций, каждая из которых дороже e^{-r(T-t)} приведёт к чистой прибыли e^{-r(T-t)}F(t).

См. также[править | править исходный текст]

Ссылки[править | править исходный текст]

Обсуждение

Онлайн инструменты

Примечания[править | править исходный текст]

  • Black, Fischer (1976). The pricing of commodity contracts, Journal of Financial Economics, 3, 167-179.
  • Garman, Mark B. and Steven W. Kohlhagen (1983). Foreign currency option values, Journal of International Money and Finance, 2, 231-237.
  • Miltersen, K., Sandmann, K. et Sondermann, D., (1997): "Closed Form Solutions for Term Structure Derivates with Log-Normal Interest Rates", Journal of Finance, 52(1), 409-430.