Модель Клейна

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Через точку P проходит бесконечно много прямых, не пересекающих прямую a

Модель Клейна — модель геометрии Лобачевского, названная в честь немецкого математика Феликса Клейна. Эта модель была предложена Бельтрами, наряду с моделью Пуaнкаре и моделью псевдосферы[1][2].

С её помощью возможно доказать непротиворечивость геометрии Лобачевского в предположении непротиворечивости Евклидовой геометрии.

Плоскость Лобачевского представлена в этой модели внутренностью некоторого круга («абсолюта»). Точки абсолюта, называемые также «идеальными точками», плоскости Лобачевского уже не принадлежат. Прямая плоскости Лобачевского — это хорда абсолюта, соединяющая две идеальные точки.

Движениями геометрии Лобачевского в модели Клейна объявляются проективные преобразования плоскости, переводящие внутренность абсолюта в себя. Конгруэнтными считаются фигуры внутри абсолюта, переводимые друг в друга такими движениями. Если точки A и B лежат на хорде PQ так, что порядок их следования на прямой PABQ, тогда расстояние \ell(A,B) в плоскости Лобачевского определяется как

\ell(A,B)=\frac{R}{2} \, {\rm ln}(PQ;BA)

где (PQ;BA) обозначает двойное отношение, Rрадиус кривизны плоскости Лобачевского.

Любой факт евклидовой геометрии, описанный на таком языке, представляет некоторый факт геометрии Лобачевского. Иными словами, всякое утверждение неевклидовой геометрии Лобачевского на плоскости есть не что иное, как утверждение евклидовой геометрии на плоскости, относящееся к фигурам внутри круга, пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, так как через точку O, не лежащую на данной хорде a, проходит сколько угодно не пересекающих её хорд.

Литература[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Eugenio Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali. di Mat., ser II, 2 (1868), 232-255.
  2. Формально говоря, эту модель построил английский математик А. Кэли в 1859 г. Но он рассматривал ее лишь как некоторую конструкцию в проективной геометрии и, видимо, не заметил никакой связи ее с неевклидовой геометрией. В 1869 г. с его работой познакомился молодой (20-летний) Клейн. Он вспоминает, что в 1870 г. сделал доклад о работах Кэли на семинаре знаменитейшего тогда математика Вейерштрасса и, как он пишет, «закончил его вопросом, не существует ли связи между идеями Кэли и Лобачевского. Я получил ответ, что это — две далеко отстоящие по идее системы». Как говорит Клейн, «я позволил переубедить себя этими возражениями и отложил в сторону уже созревшую мысль». Однако в 1871 г. он к этой мысли вернулся, оформил ее математически и опубликовал. // Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, гл. XII, пар. 2, — Физматлит, Москва, 2009.