Муравей Лэнгтона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Муравей Лэнгтона — это двумерная машина Тьюринга с очень простыми правилами, изобретенная Крисом Лэнгтоном.

После 11000 шагов (красный пиксел — местонахождение муравья)

Правила[править | править вики-текст]

Первые 200 шагов
Муравей выбирается из квадрата

Рассмотрим бесконечную плоскость, разбитую на клетки, покрашенные некоторым образом в чёрный и белый цвет. Пусть в одной из клеток находится «муравей», который на каждом шаге может двигаться в одном из четырёх направлений в клетку, соседнюю по стороне. Муравей движется согласно следующим правилам:

  • На чёрном квадрате — повернуть на 90° влево, изменить цвет квадрата на белый, сделать шаг вперед на следующую клетку.
  • На белом квадрате — повернуть на 90° вправо, изменить цвет квадрата на чёрный, сделать шаг вперед на следующую клетку.

Эти простые правила вызывают довольно сложное поведение: после некоторого периода довольно случайного движения муравей, видимо, начинает непременно строить дорогу из 104 шагов, повторяющуюся бесконечно, независимо от изначальной раскраски поля. Это наводит на мысль, что «магистральное» поведение является аттрактором муравья Лэнгтона.

Муравей Лэнгтона также может быть описан как клеточный автомат, в котором почти всё поле покрашено в чёрно-белый цвет, а клетка с «муравьем» имеет один из восьми различных цветов, кодирующих соответственно все возможные комбинации чёрного/белого цвета клетки и направления движения муравья.

3 муравья Лэнгтона с различными цветами

Расширение муравья Лэнгтона[править | править вики-текст]

Существует простое расширение муравья Лэнгтона, в котором используется более двух цветов клеток. Цвета изменяются циклически. Для таких муравьев существует также простая форма названия: для каждого следующего цвета используется буква L или R (Л и П), в зависимости от того, поворачивает ли муравей направо или налево. Таким образом, муравей Лэнгтона — это муравей RL.

Некоторые из этих обобщенных муравьев Лэнгтона рисуют узоры, которые становятся все более симметричными. Один из простых примеров — муравей RLLR. Одно достаточное условие этого заключается в том, что имя муравья, рассматриваемое как циклический список, состоит из последовательных пар повторяющихся букв LL или RR (цикличность списка означает, что последняя буква может спариваться с первой).

Тьюрмиты[править | править вики-текст]

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]