Наноробот

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Наноро́боты, или нанобо́ты — роботы, размером сопоставимые с молекулой (менее 10 нм), обладающие функциями движения, обработки и передачи информации, исполнения программ.

Нанороботы, способные к созданию своих копий, то есть самовоспроизводству, называются репликаторами[1][2]. Возможность создания нанороботов рассмотрел в своей книге «Машины создания» американский учёный Эрик Дрекслер.

Другие определения описывают наноробота как машину, способную точно взаимодействовать с наноразмерными объектами или способной манипулировать объектами в наномасштабе. Вследствие этого, даже крупные аппараты, такие как атомно-силовой микроскоп можно считать нанороботами, так как он производит манипуляции объектами на наноуровне. Кроме того, даже обычных роботов, которые могут перемещаться с наноразмерной точностью, можно считать нанороботами.

Кроме слова «наноробот» также используют выражения «нанит»[3] и «наноген», однако, технически правильным термином в контексте серьёзных инженерных исследований все равно остается первый вариант.

Уровень развития технологии[править | править вики-текст]

На данный момент (2009), нанороботы находятся в научно-исследовательской стадии создания. Некоторыми учёными утверждается, что уже созданы некоторые компоненты нанороботов[4][5][6][7][8]. Разработке компонентов наноустройств и непосредственно нанороботам посвящен ряд международных научных конференций[9][10].

Уже созданы некоторые примитивные прототипы молекулярных машин. Например, датчик, имеющий переключатель около 1,5 нм, способный вести подсчет отдельных молекул в химических образцах[11]. Недавно университет Райса продемонстрировал наноустройства для использования их в регулировании химических процессов в современных автомобилях.

Одним из самых сложных прототипов наноробота является «DNA box», созданный в конце 2008 года международной группой под руководством Йоргена Кьемса[12]. Устройство имеет подвижную часть, управляемую с помощью добавления в среду специфических фрагментов ДНК. По мнению Кьемса, устройство может работать как «ДНК-компьютер», т.к на его базе возможна реализация логических вентилей. Важной особенностью устройства является метод его сборки, так называемый ДНК оригами (англ.), благодаря которому устройство собирается в автоматическом режиме.

В 2010 году были впервые продемонстрированы нанороботы на основе ДНК, способные перемещаться в пространстве[13][14][15].

Теория нанороботов[править | править вики-текст]

Так как нанороботы имеют микроскопические размеры, то их, вероятно, потребуется очень много для совместной работы в решении микроскопических и макроскопических задач. Рассматривают стаи нанороботов, которые не способны к репликации (т. н. «утилитарный туман») и которые способны к самостоятельной репликации в окружающей среде («серая слизь» и др. варианты).

Некоторые сторонники нанороботов в ответ на сценарий «серой слизи» высказывают мнение о том, что нанороботы способны к репликации только в ограниченном количестве и в определенном пространстве нанозавода. Кроме того, ещё только предстоит разработать процесс саморепликации, который сделает данную нанотехнологию безопасной. Кроме того, свободная саморепликация роботов является гипотетическим процессом и даже не рассматривается в текущих планах научных исследований.

Однако, имеются планы по созданию медицинских нанороботов, которые будут впрыскиваться в пациента и выполнять роль беспроводной связи на наноуровне. Такие нанороботы не могут быть получены в ходе самостоятельного копирования, так как это вероятно приведет к появлению ошибок при копировании, которые могут снизить надежность наноустройства и изменить выполнение медицинских задач. Вместо этого нанороботов планируется изготавливать на специализированных медицинских нанофабриках.

Конструкция нанороботов[править | править вики-текст]

молекулярный пропеллер

В связи с развитием направления научных исследований нанороботов, сейчас наиболее остро стоят вопросы их конкретного проектирования. Одной из инициатив по решению этой проблемы является «Сотрудничество по разработке нанофабрик»[16] , основанное Робертом Фрайтасом и Ральфом Меркле в 2000 году, деятельность которого сосредоточена на разработке практической программы исследований [17], которая направлена на создание контролируемой алмазной механосинтетической нанофабрики, которая будет способна к производству медицинских нанороботов на основе алмазных соединений.

Для этого разрабатываются технологии зондирования, управления силовыми связями между молекулами и навигации. Создаются проекты и прототипы инструментария для манипуляций, двигательного аппарата (молекулярные моторы) и "бортового компьютера".

Двигательный аппарат[править | править вики-текст]

молекулярный мотор

Молекулярные двигатели — наноразмерные машины, способные осуществлять вращение при приложении к ним энергии. Главной особенностью молекулярных моторов являются повторяющиеся однонаправленные вращательные движения происходящие при подаче энергии. Для подачи энергии используются химический, световой метод, а также метод туннелирования электронов.

Кроме молекулярных двигателей, создаются также наноэлектродвигатели, сходные по конструкции с макроскопическими аналогами[18], проектируются двигатели, принцип работы которых основывается на использовании квантовых эффектов[19].

Потенциальная сфера применений[править | править вики-текст]

Первое полезное применение наномашин, если они появятся, планируется в медицинских технологиях, где они могут быть использованы для выявления и уничтожения раковых клеток. Также они могут обнаруживать токсичные химические вещества в окружающей среде и измерять уровень их концентрации.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Э.Дрекслер. Машины созидания: грядущая эра нанотехнологии, 1986.
  2. Джон Роберт Марлоу: война с репликаторами | Нанотехнологии Nanonewsnet
  3. Нанороботы — будущий триумф или трагедия для человечества? — Нано Дайджест
  4. MEMBRANA | Мировые новости | Нанотехнологи изобрели колёсную пару
  5. MEMBRANA | Мелких ходоков научили таскать молекулярные тяжести
  6. MEMBRANA | Мировые новости | Двуногая молекула самостоятельно ходит по плоскости
  7. MEMBRANA | Мировые новости | Одномолекулярный автомобиль получил мотор
  8. MEMBRANA | Мировые новости | Построен ездящий одномолекулярный автомобиль
  9. Workshop «Trends in nanomechanics and nanoengineering»
  10. http://www.rtc.ru/conference/confrob20-inf.shtml
  11. http://www.ras.ru/FStorage/download.aspx?Id=9adcb47a-a5ec-40e8-8d21-13f932965350
  12. Self-assembly of a nanoscale DNA box with a controllable lid : Article : Nature
  13. Ученые создали на основе молекул ДНК четырехногого робота  (рус.), РИА Новости (14 мая 2010). Проверено 14 мая 2010.
  14. Hongzhou Gu, Jie Chao, Shou-Jun Xiao and Nadrian C. Seeman A proximity-based programmable DNA nanoscale assembly line (англ.) // Nature. — 2010. — Т. 465. — С. 202–205.
  15. Kyle Lund et al. Molecular robots guided by prescriptive landscapes (англ.) // Nature. — 2010. — Т. 465. — С. 206–210.
  16. Nanofactory
  17. Positional Diamondoid Molecular Manufacturing
  18. Rotational actuators based on carbon nanotubes : Article : Nature
  19. Элементы — новости науки: Предложена модель атомного квантового двигателя
  20. Нанотехнологии о раке
  21. Технология борьбы с раком
  22. Доставка лекарств
  23. Проектирование медицинских устройств
  24. Neurosurgery
  25. Крошечные роботы для использования в хирургии
  26. Целевые лекарства
  27. Нанороботы в терапии диабета
  28. Nanorobotics for Diabetes
  29. Wellness Engineering, Nanorobots, Diabetes

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]