Нейтрон

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер[3]; общее название для протонов и нейтронов — нуклоны.

Открытие[править | править вики-текст]

Открытие нейтрона (1932) принадлежит физику Джеймсу Чедвику, за это открытие он получил Нобелевскую премию по физике в 1935 году.

В 1930 г. В. А. Амбарцумян и Д. Д. Иваненко показали, что ядро не может, как считалось в то время, состоять из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.[4][5]

В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 г. Д. Д. Иваненко[6] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

Основные характеристики[править | править вики-текст]

Несмотря на нулевой электрический заряд, нейтрон не является истинно нейтральной частицей. Античастицей нейтрона является антинейтрон, который не совпадает с самим нейтроном. Нейтрон аннигилирует с антинейтроном и другими антиадронами (в частности, с антипротоном).

Строение и распад[править | править вики-текст]

кварковая структура нейтрона

Считается надёжно установленным, что нейтрон является связанным состоянием трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (кварковая структура udd). Близость значений масс протона и нейтрона обусловлена свойством приближённой изотопической инвариантности: в протоне (кварковая структура uud) один d-кварк заменяется на u-кварк, но поскольку массы этих кварков очень близки, такая замена слабо сказывается на массе составной частицы.

Поскольку нейтрон тяжелее протона (на 1,29333217(42) МэВ, или 0,00138844919(45) а.е.м.), то он может распадаться в свободном состоянии. Единственным каналом распада, разрешённым законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является бета-распад нейтрона на протон, электрон и электронное антинейтрино (а также, возможно, гамма-квант[13]). Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия. Однако, ввиду специфических свойств слабого взаимодействия, скорость этой реакции аномально мала из-за крайне малого энерговыделения (разности масс начальных и конечных частиц). Именно этим объясняется тот факт, что нейтрон является настоящим долгожителем среди элементарных частиц: его время жизни, приблизительно равное 15 минутам, примерно в миллиард раз больше времени жизни мюона — следующей за нейтроном метастабильной частице по времени жизни.

Кроме того, разница масс между протоном и нейтроном около 1,3 МэВ невелика по меркам ядерной физики. Вследствие этого, в ядрах нейтрон может находиться в более глубокой потенциальной яме, чем протон, и потому бета-распад нейтрона оказывается энергетически невыгодным. Это приводит к тому, что в ядрах нейтрон может быть стабильным. Более того, в нейтроно-дефицитных ядрах происходит бета-распад протона в нейтрон (с захватом орбитального электрона или вылетом позитрона), который энергетически запрещён для свободного протона.

На кварковом уровне бета-распад нейтрона может быть описан как превращение одного из d-кварков в u-кварк с испусканием виртуального W-бозона, который немедленно распадается на электрон и электронное антинейтрино.

Изучение распада свободного нейтрона важно для уточнения свойств слабого взаимодействия, а также поиска нарушений временно́й инвариантности, нейтрон-антинейтронных осцилляций и т. п.

Другие свойства[править | править вики-текст]

Изоспины нейтрона и протона одинаковы (12), но их проекции противоположны по знаку. Проекция изоспина нейтрона по соглашению в физике элементарных частиц принимается равной −12, в ядерной физике +12 (поскольку в большинстве ядер нейтронов больше, чем протонов, это соглашение позволяет избегать отрицательных суммарных проекций изоспина).

Нейтрон — единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие — искривление в поле земного тяготения траектории хорошо коллимированного пучка ультрахолодных нейтронов. Измеренное гравитационное ускорение нейтронов в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.[14]

При огромном давлении внутри нейтронной звезды нейтроны могут деформироваться вплоть до того, что приобретают форму куба[15].

Направления исследований в физике нейтронов[править | править вики-текст]

Фундаментальные исследования:

Прикладные исследования:

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 3 http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
  2. 1 2 3 J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition. http://pdg.lbl.gov/2013/listings/rpp2013-list-n.pdf
  3. Нейтроны содержатся во всех известных атомных ядрах, кроме ядра лёгкого изотопа водорода — протия, состоящего из одного протона.
  4. Ambarzumian, V., Iwanenko, D. Les électrons inobservables et les rayons // Compt. Rend. Acad Sci. Paris. — 1930. — Т. 190. — С. 582.
  5. V. A. Ambartsumian — a life in science // Astrophysics. — 2008. — Т. 51. — С. 280-293. — DOI:10.1007/s10511-008-9016-6
  6. Iwanenko, D. The neutron hypothesis // Nature. — 1932. — В. 3265. — Т. 129. — № (28 May 1932). — С. 798. — ISSN 0028-0836. — DOI:10.1007/s10511-008-9016-6
  7. CODATA Value: proton mass energy equivalent in MeV.
  8. CODATA Value: neutron mass in u.
  9. CODATA Value: neutron mass.
  10. CODATA Value: neutron-electron mass ratio.
  11. Измерения времени жизни нейтрона, выполненные разными методами, по-прежнему расходятся.. «Элементы». Новости науки. Физика. (3 декабря 2013 г.). Проверено 11 декабря 2013.
  12. CODATA Value: neutron magnetic moment to nuclear magneton ratio.
  13. Экспериментально установлено, что радиативный бета-распад (то есть распад с излучением электрона, электронного антинейтрино и дополнительно гамма-кванта) происходит в 0,309 % случаев от всех распадов нейтрона. Бета-распад нейтрона в связанное состояние, то есть с захватом излучаемого электрона на орбиту вокруг образовавшегося протона, предсказан теоретически, но пока не был обнаружен; установлено лишь, что такой процесс происходит менее чем в 3 % случаев. См. Бета-распад нейтрона.
  14. «ФИЗИКА» Большой энциклопедический словарь, Научное издательство «Большая Российская энциклопедия», М., 1998, стр. 453.
  15. Felipe J. Llanes-Estrada, Gaspar Moreno Navarro. (2011), "Cubic neutrons", arΧiv:1108.1859v1 [nucl-th] 

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]

Логотип Викисловаря
В Викисловаре есть статья «нейтрон»