Неотрицательная матрица

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В математике, неотрицательная матрица — это матрица, элементы которой больше или равны нулю:

\mathbf{X} \geq 0, \qquad \forall i,j\, x_{ij} \geq 0.

Положительная матрица — это матрица, элементы которой строго больше нуля:

\mathbf{X} > 0, \qquad \forall i,j\, x_{ij} > 0.

Любая стохастическая матрица (матрица переходных вероятностей для цепи Маркова) является неотрицательной.

Положительную матрицу не стоит путать с положительно определённой матрицей.

Матрица, которая одновременно является неотрицательной и неотрицательно определённой называют вдвойне неотрицательной матрицей.

Собственные значения и собственные вектора квадратной положительной матрицей, описываются теоремой Фробениуса-Перрона.

Обратные матрицы[править | править вики-текст]

Матрица, обратная любой невырожденной M-матрице является неотрицательной матрицей. Если невырожденная M-матрица является симметричной, то полученная обратная матрица называется матрицей Стильтьеса.

Неотрицательная матрица имеет неотрицательную обратную тогда и только тогда, когда она является неотрицательной мономиальной матрицей.


Применение[править | править вики-текст]

Неотрицательные матрицы возникают при изучении стохастических, бистохастических матриц, а также участвуют в формулировке ряда теорем.

См. также[править | править вики-текст]

Матрица Метцлера

Литература[править | править вики-текст]

  1. Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 1994, SIAM. ISBN 0-89871-321-8.
  2. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979 (chapter 2), ISBN 0-12-092250-9
  3. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990 (chapter 8).
  4. Krasnosel'skii M. A. Positive Solutions of Operator Equations. — Groningen: P.Noordhoff Ltd, 1964. — P. 381 pp..
  5. Positive Linear Systems: The method of positive operators. — Berlin: Helderman Verlag, 1990. — Vol. 5. — P. 354 pp..
  6. Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3
  7. Seneta, E. Non-negative matrices and Markov chains. 2nd rev. ed., 1981, XVI, 288 p., Softcover Springer Series in Statistics. (Originally published by Allen & Unwin Ltd., London, 1973) ISBN 978-0-387-29765-1
  8. Richard S. Varga 2002 Matrix Iterative Analysis, Second ed. (of 1962 Prentice Hall edition), Springer-Verlag.