Эта статья входит в число добротных статей

Окислительное декарбоксилирование пирувата

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Окисли́тельное декарбоксили́рование пирува́табиохимический процесс, заключающийся в отщеплении одной молекулы углекислого газа (СО2) от молекулы пирувата и присоединения к декарбоксилированному пирувату кофермента А (СоА) с образованием ацетил-СоА; является промежуточным этапом между гликолизом и циклом трикарбоновых кислот. Декарбоксилирование пирувата осуществляет сложный пируватдегидрогеназный комплекс (PDH), включающий в себя 3 фермента и 2 вспомогательных белка, а для его функционирования необходимы 5 кофакторов (СоА, NAD+, тиаминпирофосфат (ТРР), FAD и липоевая кислота (липоат)). Суммарное уравнение окислительного декарбоксилирования пирувата таково[1]:

Pyruvate decarboxylation.svg

У эукариот пируватдегидрогеназный комплекс локализован в митохондриях, у бактерий — в цитозоле. Образующийся в результате ацетил-СоА далее вовлекается в цикл Кребса[1].

Окислительное декарбоксилирование пирувата — необратимый процесс. Образующийся в ходе этого процесса NADH впоследствии отдаёт гидридный ион-) в дыхательную цепь, в которой при аэробном дыхании конечным акцептором электронов является кислород, а при анаэробном — другие окисленные соединения (например, сульфат, нитрат). Перенос электронов с NADH на кислород даёт 2,5 молекулы ATP на пару электронов. Необратимость реакции, осуществляемой пируватдегидрогеназным комплексом, была показана в исследованиях с применением радиоактивных изотопов: комплекс не может обратно присоединить меченый СО2 к ацетил-СоА с образованием пирувата[2].

Коферменты[править | править вики-текст]

Некоторые коферменты PDH

Итак, комбинированное дегидрирование и декарбоксилирование пирувата до ацильной группы[en], которая в дальнейшем войдёт в ацетил-СоА, осуществляется тремя различными ферментами, для функционирования которых необходимы 5 различных коферментов или простетических групп: тиаминпирофосфат (ТРР), FAD, кофермент А (СоА), NAD и липоат. 4 из них являются производными витаминов: тиамина, или витамина В1 (ТРР), рибофлавина, или витамина В2 (FAD), ниацина, или витамина РР (NAD) и пантотеновой кислоты, или витамин В5 (СоА)[3].

FAD и NAD являются переносчиками электронов, а ТРР известен также как кофермент пируватдекарбоксилазы[en], участвующей в брожении[3].

Кофермент А имеет активную тиольную группу (—SH), которая имеет критическое значение для функционирования СоА в качестве переносчика ацильной группы в ряде метаболических реакций. Ацильные группы при этом ковалентно связываются с тиольной группой, образуя тиоэфиры. Из-за их относительно высокой стандартной свободной энергии гидролиза тиоэфиры обладают высоким потенциалом для переноса ацильных групп к различным молекулам-акцепторам. Поэтому ацетил-СоА иногда также называют «активированной уксусной кислотой»[3][4].

Пятый кофактор пируватдегидрогеназного комплекса, липоат, имеет две тиольные группы, которые могут подвергаться обратимому окислению с образованием дисульфидной связи (—S—S—), подобно тому, как это происходит между двумя остатками аминокислоты цистеина в белке. Из-за своей способности подвергаться окислению и восстановлению липоат может служить как в качестве переносчика электронов (или H+), так и ацильных групп[3].

Пируватдегидрогеназный комплекс[править | править вики-текст]

Пируватдегидрогеназный комплекс (PDH)

Трёхмерная модель PDH
Схематическое изображение PDH с указанием ферментов (Е1, Е2, Е3). Зелёным цветом выделена коровая часть, синим — липоильный домен Е2, который продолжается вперёд до соприкосновения с активными центрами молекул Е1 (жёлтый цвет). С кором также связано несколько субъединиц Е3 (красный), и, раскачиваясь, «рука» Е2 может достать до их активных центров

Пируватдегидрогеназный комплекс (PDH) включает 3 фермента: пируватдегидрогеназу[en]1), дигидролипоилтрансацетилазу[en]2) и дигидролипоилдегидрогеназу[en]3). Каждый из этих ферментов присутствует в комплексе во множестве копий. Количество копий каждого фермента, а следовательно, и размер комплекса варьирует среди различных видов. Комплекс PDH млекопитающих достигает около 50 нм в диаметре, что более чем в 5 раз превышает диаметр целой рибосомы; эти комплексы достаточно велики, чтобы быть различимыми в электронный микроскоп. В PDH коровы входят 60 идентичных копий Е2, которые формируют пентагональный додекаэдр (коровая часть[en] комплекса) диаметром около 25 нм. В кор PDH у бактерии Escherichia coli входит 24 копии Е2. К Е2 присоединяется простетическая группа липоат, которая связывается амидной связью к ε-аминогруппе остатка лизина, входящего в состав Е2. Е2 состоит из трёх функционально различных доменов: аминотерминального липоильного домена, содержащего остаток лизина, связывающийся с липоатом; центрального Е1- и Е3-связывающего домена; внутреннего корового ацилтрансферазного домена, содержащего активные центры ацилтрансферазы. У дрожжей в PDH имеется единственный липоильный домен, у млекопитающих — два, а у E. coli — три. Домены Е2 разделаются линкерными последовательностями аминоксилот, состоящими из 20—30 аминокислотных остатков, причём в них остатки аланина и пролина перемежаются с заряженными аминокислотыми остатками. Такие линкеры обычно принимают протяжённую форму, тем самым отделяя друг от друга три домена[5].

С активным центром Е1 связывается ТРР, а с активным центром Е3 — FAD. Также в состав комплекса PDH входят два регуляторных белка — протеинкиназа и фосфопротеинфосфатаза[en]. Такая основная структура из Е123 оставалась консервативной в ходе эволюции. Комплексы такого устройства принимают участие и в других реакциях, например, окислении α-кетоглутарата в ходе цикла Кребса и окислении α-кетокислот, образующихся при катаболической утилизации разветвлённых аминокислот: валина, изолейцина, лейцина. У изученных видов Е3 PDH идентичен Е3 двух вышеупомянутых комплексов. Примечательное сходство структур белков, кофакторов и механизмов реакций, осуществляемых этими комплексами, свидетельствует об общности их происхождения[1]. При прикреплении липоата к лизину Е2 образуется длинная, гибкая «рука», которая может перемещаться с активного центра Е1 в активные центры Е2 и Е3, т. е. на расстояния предположительно 5 нм и более[6].

Механизм[править | править вики-текст]

Окислительное декарбоксилирование пирувата включает несколько стадий:

  • Стадия 1 идентична пируватдекарбоксилазной реакции. Первый атом углерода (С-1) пирувата уходит в виде СО2, а С-2, в пирувате находящийся в альдегидной форме, прикрепляется к ТРР в виде гидроксиэтильной группы (—СНОН—СН3). Первая стадия является наиболее медленной и поэтому ограничивает скорость всего процесса. Кроме того, на этом этапе комплекс PDH проявляет свою субстратную специфичность. Эта реакция осуществляется пируватдегидрогеназой (Е1).
  • Стадия 2. Гидроксиэтильная группа окисляется до карбоновой кислоты (ацетата). Два электрона, освобождаемых при этой реакции, идут на восстановление связи —S—S— липоильной группы Е2 до двух тиольных (—SH) групп.
  • Стадия 3. Ацетильный остаток, образующийся в ходе окислительно-восстановительной реакции на стадии 2, сначала связывается тиоэфирной связью с липоильной —SH-группой, а затем переносится на СоА с образованием ацетил-СоА. Таким образом, энергия окисления идёт на образование высокоэнергетического тиоэфира ацетата. Стадии 2 и 3 катализируются дигидролипоилтрансацетилазой (Е2).
  • Стадия 4 и стадия 5 катализируются дигидролиполилдегидрогеназой (Е3). В ходе этих двух последних реакций восстановленный липоиллизин снова возвращается в окисленную форму, который в дальнейшем может участвовать в следующем цикле окислительного декарбоксилирования пирувата. Электроны, изначально принадлежавшие гидроксиэтильной группе, при этом переносятся с липоиллизина сначала на FAD с образованием FADH2, а потом на NAD+ с образованием NADH + H+[7].
Схема окислительного декарбоксилирования пирувата

Центральную роль в реакции, осуществляемой комплексом PDH, играют липоиллизиновые «руки» Е2, способные «раскачиваться» и забирать два электрона от Е1, а также ацетильную группу, образовавшуюся из пирувата, и доставлять электроны к Е3. Все эти ферменты и коферменты собраны в кластер, благодаря чему промежуточные соединения могут вступать в необходимые реакции быстро и не диффундируя с поверхности ферментного комплекса. За счёт этого промежуточные соединения не покидают комплекса, и локальная концентрация субстрата Е2 поддерживается очень высокой. Это также предотвращает перехватывание активированной ацетильной группы другими ферментами, использующими её в качестве субстрата[7].

Регуляция[править | править вики-текст]

У млекопитающих PDH сильно подавляется ATP, а также продуктами реакции: ацетил-СоА и NADH. Аллостерическое[en] подавление окисления пирувата значительно усиливается в присутствии длинноцепочечных жирных кислот. AMP, СоА и NAD+, накапливающиеся тогда, когда в цикл Кребса поступает слишком мало ацетата, аллостерически активируют комплекс PDH. Таким образом, ферментный комплекс подавляется, когда имеется достаточно ацетил-СоА или сырья (жирные кислоты) для осуществления альтернативных путей образования ацетил-СоА, а отношения [ATP]/[ADP] и [NADH]/[NAD+] достаточно велики. Напротив, при большой потребности в энергии и необходимости большего количества ацетил-КоА для функционирования цикла Кребса PDH активируется[8].

У млекопитающих к этим аллостерическим механизмам добавляется второй уровень регуляции: ковалентная модификация белка. Комплекс PDH подавляется обратимым фосфорилированием по специфическим остаткам серина на одной из двух субъединиц E1. Ранее отмечалось, что, помимо субъединиц E1, E2 и E3 у млекопитающих в комплекс PDH входят два регуляторных белка, единственным назначением которых является регуляция активности комплекса. Специфичная протеинкиназа фосфорилирует и тем самым инактивирует E1, а специфичная фосфопротеинфосфатаза удаляет фосфатные группы путём гидролиза и тем самым активирует E1. Киназа аллостерически активируется ATP: когда [ATP] велика (что свидительствует о достаточном количестве энергии), комплекс PDH инактивируется фосфорилированием E1. Когда [ATP] понижена, активность киназы снижается, и фосфатаза убирает фосфатные группы с E1, активируя комплекс[9].

Комплекс PDH растений, располагающийся в матриксе митохондрий и пластидах, подавляется продуктами его активности — NADH и ацетил-СоА. Растительный митохондриальный фермент также регулируется обратимым фосфорилированием: пируват подавляет киназу, активируя PDH, а NH4+ стимулирует киназу и инактивирует комплекс. У E. coli PDH регулируется аллостерически по схожему с млекопитающими механизму, однако, по-видимому, не регулируется фосфорилированием[9].

Клиническое значение[править | править вики-текст]

4 витамина (тиамин, рибофлавин, ниацин, пантотеновая кислота), из которых образуются коферменты PDH, обязательно должны присутствовать в рационе человека[3]. Кроме того, мутации генов, кодирующих субъединицы PDH, а также недостаток тиамина в пище могут иметь очень серьёзные последствия. Животные, испытывающие недостаток тиамина, не могут нормально окислять пируват. Особенно это важно для мозга, который обычно получает энергию при аэробном окислении глюкозы, а этот процесс обязательно включает окисление пирувата. Бери-бери — заболевание, развивающееся при недостатке тиамина — характеризуется расстройством функций нервной системы. Эта болезнь обычно встречается в популяциях людей, чей рацион состоит в основном из белого (очищенного) риса, лишённого шелухи, в которой содержится большая часть тиамина риса. Недостаточность тиамина может также развиться у людей, постоянно употребляющих алкоголь, так как большая часть получаемой ими энергии находится в виде «пустых калорий» очищенного спирта, лишённого витаминов. Повышенное содержание пирувата в крови часто является индикатором нарушений в окислении пирувата из-за одной из вышеперечисленных причин[10].

Другие пути преобразования пирувата[править | править вики-текст]

У некоторых микроорганизмов преобразование пирувата в ацетил-СоА (или другие продукты) может осуществляться и другими способами, помимо вышеописанного (комплекс PDH используется аэробами). Такими преобразованиями могут быть:

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • David L. Nelson, Michael M. Cox. Lehninger Principles of biochemistry. — Fifth edition. — New York: W. H. Freeman and company, 2008. — 1158 p. — ISBN 978-0-7167-7108-1.
  • Нетрусов А. И., Котова И. Б. Микробиология. — 4-е изд., перераб. и доп.. — М.: Издательский центр «Академия», 2012. — 384 с. — ISBN 978-5-7695-7979-0.