Органическая химия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Органи́ческая хи́мия — раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза.[1] Органическими называют соединения углерода с другими элементами. Наибольшее количество соединений углерод образует с так называемыми элементами-органогенами: H, N, O, S, P.[2] Способность углерода соединяться с большинством элементов и образовывать молекулы различного состава и строения обусловливает многообразие органических соединений (к концу XX века их число превысило 10 млн, сейчас более 60 млн[источник не указан 950 дней]). Органические соединения играют ключевую роль в существовании живых организмов.

Предмет органической химии включает следующие цели, экспериментальные методы и теоретические представления:

  • Выделение индивидуальных веществ из растительного, животного или ископаемого сырья
  • Синтез и очистка соединений
  • Определение структуры веществ
  • Изучение механизмов химических реакций
  • Выявление зависимостей между структурой органических веществ и их свойствами

История[править | править исходный текст]

Способы получения различных органических веществ были известны ещё с древности. Египтяне и римляне использовали красители индиго и ализарин, содержащиеся в растительных веществах. Многие народы знали секреты производства спиртных напитков и уксуса из сахар- и крахмалсодержащего сырья.

Во времена средневековья к этим знаниям ничего не прибавилось, некоторый прогресс начался только в XVI—XVII в: были получены некоторые вещества, в основном путём перегонки определённых растительных продуктов. В 1769—1785 г. Шееле выделил несколько органических кислот, таких как яблочная, винная, лимонная, галловая, молочная и щавелевая. В 1773 г. Руэль выделил из человеческой мочи мочевину.

Выделенные из животного или растительного сырья продукты имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» — раздел химии, изучающий вещества, выделенные из организмов (определение Берцелиуса, 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».

Как принято считать, органическая химия как наука появилась в 1828 году, когда Фридрих Вёлер впервые получил органическое вещество — мочевину — в результате упаривания водного раствора цианата аммония (NH4OCN).

Важным этапом стала разработка теории валентности Купером и Кекуле в 1857 г., а также теории химического строения Бутлеровым в 1861 г. В основу этих теорий были положены четырёхвалентность углерода и его способность к образованию цепей. В 1865 году Кекуле предложил структурную формулу бензола, что стало одним из важнейших открытий в органической химии. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, если атом углерода поместить в центр этого тетраэдра. В 1917 году Льюис предложил рассматривать химическую связь с помощью электронных пар.

В 1931 г. Хюккель применил квантовую теорию для объяснения свойств альтернантных ароматических углеродов, чем основал новое направление в органической химии — квантовую химию. В 1933 г. Ингольд провёл изучение кинетики реакции замещения у насыщенного атома углерода, что привело к масштабному изучению кинетики большинства типов органических реакций.

Историю органической химии принято излагать в связи с открытиями сделанными в области строения органических соединений, однако такое изложение больше связано с историей химии вообще. Гораздо интереснее рассматривать историю органической химии с позиции материальной базы, то есть собственно предмета изучения органической химии.

На заре органической химии предметом изучения были преимущественно субстанции биологического происхождения. Именно этому факту органическая химия обязана своим названием. Научно-технический прогресс не стоял на месте, и со временем основной материальной базой органической химии стала каменноугольная смола, выделяемая при получении кокса прокаливанием каменного угля. Именно на основе переработки каменноугольной смолы в конце XIX века возник основной органический синтез. В 50-60 годах прошлого века произошёл переход основного органического синтеза на новую базу — нефть. Таким образом появилась новая область химии — нефтехимия. Огромный потенциал, который был заложен в новом сырье вызвал бум в органической химии и химии вообще. Появление и интенсивное развитие такой области как химии полимеров обязана прежде всего новой сырьевой базе.

Несмотря на то, что современная органическая химия в качестве материальной базы по прежнему использует сырье биологического происхождения и каменноугольную смолу, объём переработки этих видов химического сырья по сравнению с переработкой нефти мал. Смена материально-сырьевой базы органической химии была вызвана прежде всего возможностями наращивания объёмов производства.

Классификация органических соединений[править | править исходный текст]

Подробно рассмотрена в статье «Органические соединения».

Правила и особенности классификации[править | править исходный текст]

В основе классификации лежит структура органических соединений. Основа описания структуры — структурная формула. Атомы элементов обозначаются латинскими символами, как они обозначены в периодической таблице химических элементов (таблице Менделеева). Водородные и электронодефицитные связи обозначаются пунктирной линией, ионные связи обозначаются указанием зарядов частиц, входящих в состав молекулы. Поскольку в подавляющее большинство органических молекул входит водород, его обычно не обозначают при изображении структуры. Таким образом, если в структуре у одного из атомов изображена недостаточная валентность, значит, возле этого атома расположен один или несколько атомов водорода.

Атомы могут образовывать циклические и ароматические системы.

Основные классы органических соединений[править | править исходный текст]

Ациклические (с открытой цепью) Карбоциклические (с замкнутой цепью)
предельные непредельные предельные непредельные
с одинарной связью с двойной связью с тройной связью с двумя двойными связями с одинарной связью с бензольным кольцом
ряд метана (алканы) ряд этилена (алкены) ряд ацетилена (алкины) ряд диеновых углеводородов ряд полиметиленов (нафтены) ряд бензола (ароматические углеводороды, или арены)
  • Гетероциклические — содержат гетероатомы в составе кольца. Различаются по числу атомов в цикле, по виду гетероатома, по количеству гетероатомов в цикле.
  • Органического происхождения — как правило соединения очень сложной структуры, зачастую принадлежат сразу к нескольким классам органических веществ, часто полимеры. Из-за этого их сложно классифицировать и их выделяют в отдельный класс веществ.
  • Полимеры — вещества очень большой молекулярной массы, которые состоят из периодически повторяющихся фрагментов — мономерных звеньев.

Строение органических молекул[править | править исходный текст]

Органические молекулы в основном образованы ковалентными неполярными связями C—C, или ковалентными полярными типа C—O, C—N, C—Hal. Согласно октетной теории Льюиса и Косселя молекула является устойчивой, если внешние орбитали всех атомов полностью заполнены. Для таких элементов как C, N, O, Галогены необходимо 8 электронов, чтобы заполнить внешние валентные орбитали, для водорода необходимо только 2 электрона. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома.

Классическая теория валентных связей не в состоянии объяснить все типы связей, существующие в органических соединениях, поэтому современная теория использует методы молекулярных орбиталей и квантовохимические методы.

Строение органического вещества[править | править исходный текст]

Свойства органических веществ определяются не только строением их молекул, но и числом и характером их взаимодействий с соседними молекулами, а также взаимным пространственным расположением. Наиболее ярко эти факторы проявляются в различии свойств веществ, находящихся в разных агрегатных состояниях. Так, вещества, легко взаимодействующие в виде газа, могут совершенно не реагировать в твёрдом состоянии, или приводить к другим продуктам.

В твёрдых органических веществах, в которых наиболее ярко проявляются эти факторы, различают органические кристаллы и аморфные тела. Их описанием занимается наука «химия органического твёрдого тела», основание которой связывают с именем советского физика-кристаллографа А. И. Китайгородского. Примеры полезных органических твёрдых тел — органические люминофоры, разнообразные полимеры, сенсоры, катализаторы, электропроводники, магниты и др.

Особенности органических реакций[править | править исходный текст]

В неорганических реакциях обычно участвуют ионы, они проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Как правило, эти процессы требуют особых условий: определённой температуры, времени реакции, и часто наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, поэтому выход целевого вещества зачастую не превышает 50 %. Поэтому при изображении органических реакций используют не уравнения, а схемы без расчёта стехиометрии.

Реакции могут протекать очень сложным образом и в несколько стадий, не обязательно так, как реакция условно изображена на схеме. В качестве промежуточных соединений могут возникать карбкатионы R+, карбанионы R, радикалы R·, карбены CX2, катион-радикалы, анион-радикалы, и другие активные или нестабильные частицы, обычно живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции.

Реакции классифицируются в зависимости от способов разрыва и образования связей, способов возбуждения реакции, её молекулярности.

Определение структуры органических соединений[править | править исходный текст]

За все время существования органической химии как науки важной задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав соединения, в каком порядке эти атомы связаны между собой и как расположены в пространстве.

Существует несколько методов решения этих задач

  • Элементный анализ. Заключается в том, что вещество разлагается на более простые молекулы, по количеству которых можно определить количество атомов, входящее в состав соединения. С помощью этого метода невозможно установить порядок связей между атомами. Часто используется лишь для подтверждения предположенной структуры.
  • Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (ИК-спектроскопия и КР-спектроскопия). Вещество взаимодействует с электромагнитным излучением (светом) инфракрасного диапазона (в ИК-спектроскопии наблюдают поглощение, в КР-спектроскопии — рассеяние излучения). Этот свет при поглощении возбуждает колебательные и вращательные уровни молекул. Опорными данными являются число, частота и интенсивность колебаний молекулы, связанных с изменением дипольного момента (ИК-спектроскопия) или поляризуемости (КР-спектроскопия). Методы позволяют установить наличие определённых функциональных групп в молекуле. Часто используются и для того чтобы подтвердить идентичность исследуемого вещества с некоторым уже известным веществом путём сравнения спектров.
  • Метод ядерного магнитного резонанса (ЯМР). Основан на взаимодействии ядер, обладающих собственным магнитным моментом (спином) и помещённых во внешнее постоянное магнитное поле, с электромагнитным излучением радиочастотного диапазона. Один из главных методов, который может быть использован для определения химической структуры. Метод используют также для изучения пространственного строения молекул, динамики молекул. В зависимости от ядер, взаимодействующих с излучением различают, например:
    • Метод протонного магнитного резонанса (ПМР). Позволяет определить положение атомов водорода 1H в молекуле.
    • Метод ЯМР 19F. Позволяет определить наличие и положение атомов фтора в молекуле.
    • Метод ЯМР 31P. Позволяет определить наличие, положение и валентное состояние атомов фосфора в молекуле.
    • Метод ЯМР 13С. Позволяет определить число и типы атомов углерода в молекуле. Используется для исследования формы углеродного скелета молекулы.

В отличие от первых трёх в последнем методе используется неосновной изотоп элемента, поскольку ядро основного изотопа углерода — 12С имеет нулевой спин и не может наблюдаться методом ядерного магнитного резонанса, так же как и ядро 16O — единственного природного изотопа кислорода.

  • Методы аналитической химии. Позволяют определить наличие некоторых функциональных групп по специфическим химическим реакциям, факт протекания которых можно фиксировать визуально или с помощью других методов.

Литература[править | править исходный текст]

  • Быков Г. В. История органической химии. М.: Химия, 1976. 360с.
  • Гауптман З., Грефе Ю., Ремане Х., «Органическая химия». Москва, «Химия», 1979.
  • Марч Дж., «Органическая химия: реакции, механизмы и структура», в 4-х томах. Москва, «Мир», 1987.]
  • Кери Ф., Сандберг Р., «Углубленный курс органической химии», в 2-х томах. Москва, «Химия», 1981.
  • Реутов О. А., Курц А. Л., Бутин К. П. «Органическая химия», в 4-х частях. Москва, Изд-во МГУ, «БИНОМ. Лаборатория знаний», 1999—2004. http://edu.prometey.org/library/autor/7883.html
  • Травень В. Ф. «Органическая химия», в 2-х томах. Москва, ИКЦ «Академкнига», 2004.
  • Химическая энциклопедия, п. ред. Кнунянц, т.3. Москва, «Большая Российская Энциклопедия», 1992.
  • Робертс Дж., Касерио М. , «Основы органической химии». Изд. 2, в 2-х томах. Москва, «Мир», 1978.
  • Моррисон Р., Бойд Р., «Органическая химия». Москва, «Мир», 1974.
  • Clayden J., Greeves N., Warren S., Wothers P. Organic Chemistry. — Oxford University Press, 2012.

Примечания[править | править исходный текст]

  1. Органическая химия. БСЭ.
  2. Предмет органической химии. Исторический обзор // Начала органической химии. — М.: Химия, 1969. — Т. 1. — С. 11—26. — 664 с. — 19 000 экз.
  3. Alcohols (англ.). IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). doi:10.1351/goldbook.A00204. Проверено 2 сентября 2010. Архивировано из первоисточника 21 августа 2011.
  4. Enols (англ.). IUPAC. Compendium of Chemical Terminology, 2nd ed. (the «Gold Book»). doi:10.1351/goldbook.E02124. Проверено 2 сентября 2010. Архивировано из первоисточника 21 августа 2011.
  5. Phenols (англ.). IUPAC. Compendium of Chemical Terminology, 2nd ed. (the «Gold Book»). doi:10.1351/goldbook.P04539. Проверено 2 сентября 2010. Архивировано из первоисточника 21 августа 2011.
  6. esters // IUPAG Gold Book

Ссылки[править | править исходный текст]



Органическая химия

Ароматичность | Ковалентная связь | Функциональная группа | Номенклатура ИЮПАК | Органическое соединение | Органическая реакция | Органический синтез | Спектроскопия | Стереохимия


Иконка портала Химический портал — мир химии, веществ и превращений на страницах Википедии.