Паракомпактное пространство

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Паракомпактное пространство — топологическое пространство, в любое открытое покрытие которого можно вписать локально конечное открытое покрытие.

При этом: семейство \mathcal U множеств, лежащих в топологическом пространстве X, называется локально конечным в X, если у каждой точки x\in X существует окрестность в X, пересекающаяся лишь с конечным множеством элементов семейства \mathcal U; семейство \mathcal U множеств вписано в семейство \mathcal V множеств, если каждый элемент семейства \mathcal U содержится в некотором элементе семейства \mathcal V.)

Паракомпактом называется паракомпактное хаусдорфово пространство. Паракомпактность является одним из исходных требований в теории многообразий.

Каждое хаусдорфово паракомпактное пространство нормально. Это позволяет строить на паракомпактах разбиения единицы, подчиненные произвольному заданному открытому покрытию.

Свойства[править | править вики-текст]

  • В присутствии паракомпактности некоторые локальные свойства пространства синтезируются и выполняются глобально. В частности,
  • Паракомпактность не наследуется произвольными подпространствами, но каждое замкнутое подпространство паракомпакта есть паракомпакт.
  • Произведение двух паракомпактов может паракомпактом не быть.
  • В классе хаусдорфовых пространств
  • К числу паракомпактов относятся, в частности, пространства Линделёфа. Для пространства всех непрерывных вещественных функций на произвольном тихоновском пространстве, наделенном топологией поточечной сходимости, паракомпактность равносильна линдолёфовости.
  • Если банахово пространство в слабой топологии топологически порождается некоторым лежащим в нем компактом, то оно паракомпактно.
  • Все метризуемые пространства паракомпактны (теорема Стоуна) .
    • Паракомпакт метризуем в том и только в том случае, если он обладает базой счётного порядка, то есть базой, любая убывающая последовательность элементов которой, содержащих какую-либо точку x\in X, непременно образует базу в этой точке.
  • Все компакты паракомпактны, но
    • Но не каждое локально компактное хаусдорфово пространство паракомпактно.