Параллелепипед

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Parallelepipedon.png

Параллелепи́пед (др.-греч. παραλληλ-επίπεδον[1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них — параллелограмм.

Типы параллелепипеда[править | править вики-текст]

Прямоугольный параллелепипед

Различается несколько типов параллелепипедов:

Основные элементы[править | править вики-текст]

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.

Свойства[править | править вики-текст]

  • Параллелепипед симметричен относительно середины его диагонали.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Противолежащие грани параллелепипеда параллельны и равны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Основные формулы[править | править вики-текст]

Прямой параллелепипед[править | править вики-текст]

Площадь боковой поверхности Sбо*h, где Ро — периметр основания, h — высота

Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания

Объём V=Sо*h

Прямоугольный параллелепипед[править | править вики-текст]

Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности Sп=2(ab+bc+ac)

Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.

Куб[править | править вики-текст]

Площадь поверхности: S=6a^2
Объём: V=a^3, где a — ребро куба.

Произвольный параллелепипед[править | править вики-текст]

Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[2]:215.

В математическом анализе[править | править вики-текст]

В математическом анализе под n-мерным прямоугольным параллелепипедом B понимают множество точек x = (x_1,\ldots,x_n) вида B = \{x|a_1\leqslant x_1\leqslant b_1,\ldots,a_n\leqslant x_n\leqslant b_n\}

Примечания[править | править вики-текст]

Ссылки[править | править вики-текст]