Параллелизм (информатика)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
«Проблема обедающих философов» — классическая проблема с параллелизмом и разделяемыми ресурсами.

В информатике параллели́зм — это свойство систем, при которой несколько вычислений выполняются одновременно, и при этом, возможно, взаимодействуют друг с другом. Вычисления могут выполняться на нескольких ядрах одного чипа с вытеснящим разделением времени потоков вычислений на одном процессоре, либо выполняться на физически отдельных процессорах. Для выполнения параллельных вычислений разработаны ряд математических моделей, в том числе сети Петри, исчисление процессов, модели параллельных случайных доступов к вычислениям и модели акторов.

Следует отметить, что в англоязычной литературе для описания понятия параллелизма в компьютерных науках используются два термина: Concurrency (одновременность) и Parallelism (параллелизм). Между ними имеется некоторое различие, о чём будет сказано ниже. В русскоязычной литературе для обоих этих терминов используется только один перевод: параллелизм, что создаёт определённые терминологические трудности.

Проблематика[править | править исходный текст]

Поскольку вычисления в параллельных системах взаимодействуют друг с другом, число возможных путей выполнения может быть чрезвычайно велико, и результирующий итог может стать недетерминированным. Параллельное использование общих ресурсов может стать одним из источников недетерминированности, приводящей к таким проблемам, как взаимная блокировка или фатальный недостаток ресурсов.[1]

Построение параллельных систем требует поиска надёжных методов координации выполняемых процессов, обмена данными, распределения памяти и планирования для минимизации времени отклика и увеличения пропускной способности.

Теория[править | править исходный текст]

Теория параллельных вычислений является активной областью исследований теоретической информатики. Одним из первых предложений в этом направлении была плодотворная работа Карла Адама Петри по сетям Петри в начале 1960-х. В последующие годы был разработан широкий спектр формализмов для моделирования и описания параллельных систем.

Модели[править | править исходный текст]

Сейчас разработано уже большое число формальных методов для моделирования и понимания работы параллельных систем, в том числе:[2]

Некоторые из этих моделей параллелизма предназначены в первую очередь для логических умозаключений и описания спецификаций, тогда как другие могут быть использованы на протяжении всего цикла разработки, включая проектирование, внедрение, доказательство истинности результатов, тестирование и моделирование параллельных систем.

Распространение различных моделей параллелизма побудило некоторых исследователей разработать способы объединения этих теоретических моделей. Например, Ли и Санджованни-Винсентелли показали, что так называемую модель «меченых сигналов» можно использовать для создания общей основы для описания денотационной семантики различных моделей параллелизма,[4] а Нильсен, Сассун и Винскль показали, что теория категорий может быть использована для обеспечения единого понимания различных моделей.[5]

Теорема представления параллелизма из модели актора обеспечивает достаточно общий способ описания параллельных систем, замкнутых в том смысле, что они не получают сообщений извне. Другие методы описания параллелизма, как, например, исчисление процессов, могут быть описаны через модель актора, используя двухфазный протокол фиксации.[6] Математические обозначения, используемые для описания замкнутой системы S, обеспечивают в большей степени хорошее приближение, если они строятся на основе начального поведения, обозначаемого S, с использованием аппроксимирующей функции поведения progressionS.[7] Тогда обозначения для S строятся следующим образом:

DenoteS ≡ ⊔i∈ω progressionSi(⊥S)

Таким образом, S может быть математически выражена посредством всех его возможных поведений.

Логика[править | править исходный текст]

Чтобы обеспечить логические рассуждения о параллельных системах, можно использовать различные виды темпоральных логик[8]. Некоторые из них, как, например, линейная темпоральная логика или логика вычислительного дерева, позволяют делать утверждения о последовательности состояний, через которые параллельная система может пройти. Другие же, такие как логика действий вычислительного дерева, логика Хеннесси-Милнера или темпоральная логика действий Лэмпорта, строят свои утверждения от последовательности действий (изменения состояний). Основное применение этих логик состоит в записи спецификаций для параллельных систем.[1]

Практика[править | править исходный текст]

В этом разделе будет использоваться два понятия параллельности, свойственные англоязычной литературе, поскольку речь пойдёт о сравнении их друг с другом. Термин Concurrency будет переводиться «одновременность», а термин Parallelism будет переводиться «параллелизм».

Одновременное программирование включает в себя языки программирования и алгоритмы, используемые для реализации одновременных систем. Одновременное программирование обычно считается более общим понятием, чем параллельное программирование, поскольку оно может включать произвольные динамические модели общения и взаимодействия, тогда как параллельные системы чаще всего реализуют заранее определённые и хорошо структурированные модели связей. Основными целями одновременного программирования являются корректность, эффективность, устойчивость. Одновременные системы, такие как операционные системы и системы управления базами данных предназначены прежде всего для работы в неопределённых условиях, в том числе с учётом автоматического восстановления после сбоя, они не должны неожиданно прекращать работу. Некоторые одновременные системы осуществляют работу в виде прозрачной одновременности, при которой одновременные вычислительные сущности могут конкурировать за использование одного и того же ресурса, но суть этой конкуренции скрыта для программиста.

Поскольку одновременные системы используют общие ресурсы, они обычно требуют наличие какого-либо арбитра, встроенного в их реализацию (часто в базовое оборудование) для управления доступом к этим ресурсам. Использование арбитров создаёт вероятность неопределённости в одновременных вычислениях, которая имеет большое значение для практики, в том числе для обеспечения корректности и эффективности. Например, арбитраж не исключает неограниченный индетерминизм, который связан с проблемой проверки моделей, являющейся причиной взрывного характера пространства состояний и может даже стать причиной образования модели с бесконечным числом состояний.

Некоторые одновременные модели программирования включают создание сопроцессов и детерминированной одновременности. В этих моделях потоки выполнения по управлению процессами явно отдают свое кванты времени либо системе, либо другому процессу.

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

  1. 1 2 Cleaveland, Rance; Scott Smolka (December, 1996). «Strategic Directions in Concurrency Research». ACM Computing Surveys 28 (4): 607. DOI:10.1145/242223.242252.
  2. Filman Robert Coordinated Computing - Tools and Techniques for Distributed Software. — McGraw-Hill, 1984. — ISBN 0-07-022439-0
  3. Keller Jörg Practical PRAM Programming. — John Wiley and Sons, 2001.
  4. Lee, Edward; Alberto Sangiovanni-Vincentelli (December, 1998). «A Framework for Comparing Models of Computation». IEEE Transactions on CAD 17 (12): 1217–1229. DOI:10.1109/43.736561.
  5. Mogens Nielsen; Vladimiro Sassone and Glynn Winskel (1993). "Relationships Between Models of Concurrency". REX School/Symposium. 
  6. Frederick Knabe. A Distributed Protocol for Channel-Based Communication with Choice PARLE 1992.
  7. William Clinger (June 1981). «Foundations of Actor Semantics» (MIT).
  8. Roscoe Colin Modal and Temporal Properties of Processes. — Springer, 2001. — ISBN 0-387-98717-7

Ссылки[править | править исходный текст]