Параллельность

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Параллельность — отношение между прямыми. Определяется немного по-разному в различных разделах геометрии.

В евклидовой геометрии[править | править вики-текст]

Параллельными прямыми называются прямые, которые лежат в одной плоскости и либо совпадают, либо не пересекаются. (Иногда совпадающие прямые не считаются параллельными, здесь[где?] такое определение не рассматривается).

Свойства[править | править вики-текст]

  1. Параллельность — бинарное отношение эквивалентности, поэтому разбивает всё множество прямых на классы параллельных между собой прямых.
  2. Через любую точку можно провести ровно одну прямую, параллельную данной. Это отличительное свойство евклидовой геометрии, в других геометриях число 1 заменено другими (в геометрии Лобачевского таких прямых бесконечно много, они образуют пучок прямых, ограниченный двумя крайними).
  3. 2 параллельные прямые в пространстве лежат в одной плоскости.
  4. При пересечении 2 параллельных прямых третьей, называемой секущей:
    1. Секущая обязательно пересекает обе прямые.
    2. При пересечении образуется 8 углов, некоторые характерные пары которых имеют особые названия и свойства:
      1. Накрест лежащие углы равны.
      2. Соответственные углы равны.
      3. Односторонние углы в сумме составляют 180°.

В геометрии Лобачевского[править | править вики-текст]

Параллельные прямые в модели Пуанкаре: две зелёные прямые параллельны синей прямой, а фиолетовая ультрапараллельна к ней

В геометрии Лобачевского в плоскости через точку C вне данной прямой AB проходит бесконечное множество прямых, не пересекающих AB. Прямая CE называется равнобежной прямой AB в направлении от A к B, если:

  1. точки B и E лежат по одну сторону от прямой AC;
  2. прямая CE не пересекает прямую AB, но всякий луч, проходящий внутри угла ACE, пересекает луч AB.

Аналогично определяется прямая, равнобежная AB в направлении от B к A.

Равнобежные прямые называются также асимптотически параллельными или просто параллельными. Все остальные прямые, не пересекающие данную, называются ультрапараллельными или расходящимися[источник не указан 1882 дня].

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]