Предсказания общей теории относительности

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Общая теория относительности предсказывает множество эффектов. В первую очередь, для слабых гравитационных полей и медленно движущихся тел она воспроизводит предсказания ньютоновой теории тяготения, как это должно быть согласно принципу соответствия. Специфически отличающие её эффекты проявляются в сильных полях (например, в компактных астрофизических объектах) и/или для релятивистски движущихся тел и объектов (например, отклонение света). В случае слабых полей общая теория относительности предсказывает только слабые поправочные эффекты, которые, однако, уже промерены в случае Солнечной системы до точности в доли процента, и рутинным образом учитываются в программах космической навигации и сведения астрономических наблюдений.

Эффекты, связанные с ускорением систем отсчёта[править | править вики-текст]

Впервые влияние ускорения на системы отсчёта было описано Эйнштейном ещё в 1907 году[1] в рамках специальной теории относительности. Таким образом, описываемые ниже эффекты присутствуют и в ней, а не только в ОТО.

Первый из этих эффектов — гравитационное замедление времени, из-за которого любые часы будут идти тем медленнее, чем глубже в гравитационной яме (ближе к гравитирующему телу) они находятся. Данный эффект был непосредственно подтверждён в эксперименте Хафеле — Китинга[2] и учитывается в системах спутниковой навигации (GPS, ГЛОНАСС, Галилео)[3]. Отсутствие такого учёта привело бы к уходу на десятки микросекунд в сутки (т.е. потере точности позиционирования, измеряемой километрами в день).

Непосредственно связанный с этим эффект — гравитационное красное смещение света. Под этим эффектом понимают уменьшение частоты света относительно локальных часов (соответственно, смещение линий спектра к красному концу спектра относительно локальных масштабов) при распространении света из гравитационной ямы наружу (из области с меньшим гравитационным потенциалом в область с большим потенциалом). Гравитационное красное смещение было обнаружено в спектрах звёзд и Солнца и надёжно подтверждено в эксперименте Паунда и Ребки.[4][5][6]

Гравитационное замедление времени влечёт за собой ещё один эффект, названный эффектом Шапиро (также известный как гравитационная задержка сигнала). Из-за этого эффекта в поле тяготения электромагнитные сигналы идут дольше, чем в отсутствие этого поля. Данное явление было обнаружено при радиолокации планет солнечной системы и космических кораблей, проходящих позади Солнца, а также при наблюдении сигналов от двойных пульсаров.[7][8]

Гравитационное отклонение света[править | править вики-текст]

Самая известная ранняя проверка ОТО стала возможна благодаря полному солнечному затмению 1919 года. Артур Эддингтон показал, что свет от звезды искривлялся вблизи Солнца в точном соответствии с предсказаниями ОТО

Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и, когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что угловой сдвиг направления распространения света в ОТО в два раза больше, чем в ньютоновской теории.[9] Таким образом, это предсказание стало ещё одним способом проверки ОТО.

С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.[10]

Под действием огромной массы Солнца вид небесной сферы искажается не только вблизи него, но и на больших угловых удалениях, хотя и в меньшей степени. Точные астрометрические наблюдения положений звёзд спутником Hipparcos подтвердили эффект. Спутник выполнил 3,5 млн измерений положения звёзд с типичной погрешностью 3 тысячных угловой секунды (миллиарксекунды, mas). При измерениях с такой точностью становится существенным даже гравитационное отклонение Солнцем света звезды, отстоящей на небесной сфере на 90° от Солнца; в таком «квадратурном» положении это отклонение равно 4,07 mas. Вследствие годового движения Солнца по небесной сфере отклонения звёзд меняются, что позволяет исследовать зависимость отклонения от взаимного положения Солнца и звезды. Среднеквадратичная погрешность измеренного гравитационного отклонения, усреднённого по всем измерениям, составила 0,0016 mas, хотя систематические погрешности ухудшают точность, с которой измерения согласуются с предсказаниями ОТО, до 0,3% [11].

Гравитационное линзирование[12] происходит, когда один отдалённый массивный объект находится вблизи или непосредственно на линии, соединяющей наблюдателя с другим объектом, намного более удалённым. В этом случае искривление траектории света более близкой массой приводит к искажению формы удалённого объекта, которое при малом разрешении наблюдения приводит, в основном, к увеличению совокупной яркости удалённого объекта, поэтому данное явление было названо линзированием. Первым примером гравитационного линзирования было получение в 1979 году двух близких изображений одного и того же квазара QSO 0957+16 A, B (z=1,4) английскими астрономами Д. Уолшем и др. «Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу — далёкую галактику (z=0,36), лежащую между Землей и квазаром».[13] С тех пор было найдены много других примеров отдалённых галактик и квазаров, затрагиваемых гравитационным линзированием. Например, известен так называемый Крест Эйнштейна, когда галактика учетверяет изображение далёкого квазара в виде креста.

Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и/или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу) и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд — МАСНО[14], EROS (англ.) и другие.

Чёрные дыры[править | править вики-текст]

Рисунок художника: аккреционный диск горячей плазмы, вращающийся вокруг чёрной дыры.

Чёрная дыра — область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результат коллапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать.

Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу[15] за счёт излучения, названного излучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО.

Известно много кандидатов в чёрные дыры, в частности сверхмассивный объект, связанный с радиоисточником Стрелец A* в центре нашей Галактики.[16] Большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются бозонные звёзды и другие экзотические объекты.[17]

Орбитальные эффекты[править | править вики-текст]

ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно связанных систем: Солнечная система, двойные звёзды и т. д.

Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия[18]. Таким образом была решена известная в то время проблема небесной механики.[19]

Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, и как более сильный эффект в системе двойного пульсара.[20] За открытие первого двойного пульсара PSR B1913+16 в 1974 году и исследования эволюции его орбитального движения, в которой проявляются релятивистские эффекты, Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.[21]

Другой эффект — изменение орбиты, связанное с гравитационным излучением двойной и более кратной системы тел. Этот эффект наблюдается в системах с близко расположенными звёздами и заключается в уменьшении[22] периода обращения. Он играет важную роль в эволюции близких двойных и кратных звёзд.[23] Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2 % совпал с предсказаниями ОТО.

Ещё один эффект — геодезическая прецессия. Она представляет собой прецессию полюсов вращающегося объекта в силу эффектов параллельного перенесения в криволинейном пространстве-времени. Данный эффект отсутствует в ньютоновской теории тяготения. Предсказание геодезической прецессии было проверено в эксперименте с зондом НАСА «Грэвити Проуб Би» (Gravity Probe B). Руководитель исследований данных, полученных зондом, Фрэнсис Эверитт на пленарном заседании Американского физического общества 14 апреля 2007 года заявил о том, что анализ данных гироскопов позволил подтвердить предсказанную Эйнштейном геодезическую прецессию с точностью превосходящей 1 %.[24] В мае 2011 опубликованы[25] окончательные итоги обработки этих данных: геодезическая прецессия составляла −6601,8±18,3 миллисекунды дуги (mas) в год, что в пределах погрешности эксперимента совпадает с предсказанным ОТО значением −6606,1 mas/год. Этот эффект ранее был проверен также наблюдениями сдвига орбит геодезических спутников LAGEOS и LAGEOS-2 и поворота оси вращения пульсара PSR B1913+16; в пределах погрешностей отклонения от теоретических предсказаний ОТО не выявлены.

Увлечение инерциальных систем отсчёта[править | править вики-текст]

Увлечение инерциальных систем отсчёта вращающимся телом заключается в том, что вращающийся массивный объект «тянет» пространство-время в направлении своего вращения: удалённый наблюдатель в покое относительно центра масс вращающегося тела обнаружит, что самыми быстрыми часами, то есть покоящимися относительно локально-инерциальной системы отсчёта, на фиксированном расстоянии от объекта являются часы, имеющие компоненту движения вокруг вращающегося объекта в направлении вращения, а не те, которые находятся в покое относительно наблюдателя, как это происходит для невращающегося массивного объекта. Точно так же удалённым наблюдателем будет установлено, что свет двигается быстрее в направлении вращения объекта, чем против его вращения. Увлечение инерциальных систем отсчёта также вызовет изменение ориентации гироскопа во времени. Для космического корабля на полярной орбите направление этого эффекта перпендикулярно геодезической прецессии, упомянутой выше.

Поскольку эффект увлечения инерциальных систем отсчёта в 170 раз слабее эффекта геодезической прецессии, стэнфордские учёные в течение 5 лет извлекали его «отпечатки» из информации, полученной на специально запущенном с целью измерения этого эффекта спутнике «Грэвити Проуб Би» (Gravity Probe B). В мае 2011 г. были объявлены[25] окончательные итоги миссии: измеренная величина увлечения составила −37,2±7,2 миллисекунды дуги (mas) в год, что в пределах точности совпадает с предсказанием ОТО: −39,2 mas/год.

Другие предсказания[править | править вики-текст]

  • Эквивалентность инерционной и гравитационной массы: следствие того, что свободное падение — движение по инерции.
  • Гравитационное излучение: орбитальное движение любых гравитационно связанных систем (в частности, тесных пар компактных звёзд — белых карликов, нейтронных звёзд, чёрных дыр), а также процессы слияния нейтронных звёзд и/или чёрных дыр, как ожидается, должны сопровождаться излучением гравитационых волн.
    • Имеются косвенные доказательства существования гравитационного излучения в виде измерений темпа потери энергии орбитального вращения двойных пульсаров. Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2 % совпал с предсказаниями ОТО.
    • Слияние двойных пульсаров и других пар компактных звёзд может создавать гравитационные волны, достаточно сильные, чтобы наблюдаться на Земле. На 2011 год существовало (или планировались в ближайшее время к постройке) несколько гравитационных телескопов для наблюдения подобных волн.
    • Только квадрупольный момент или более высокие мультипольные моменты системы приводят к гравитационному излучению. Дипольное и монопольное[26] гравитационное излучения, запрещённые в соответствии с предсказаниями ОТО, возможны, согласно некоторым альтернативным теориям[27]. Пока не существует даже косвенных подтверждений наличия такого излучения.

Примечания[править | править вики-текст]

  1. А. Эйнштейн. О принципе относительности и его следствиях // Собрание научных трудов. Т. 1. — М.: Наука, 1965.
  2. J. Hafele, R. Keating. Around the world atomic clocks:predicted relativistic time gains // Science. — 14 июля 1972. — Т. 177. — № 4044. — P. 166—168. — DOI:10.1126/science.177.4044.166
  3. Ashby Neil. Relativity in the Global Positioning System
  4. R. V. Pound, G. A. Rebka Jr. Gravitational Red-Shift in Nuclear Resonance // Physical Review Letters. — 1 ноября 1959. — Т. 3. — № 9. — P. 439—441.
  5. R. V. Pound, G. A. Rebka Jr. Apparent weight of photons // Physical Review Letters. — 1 апреля 1960. — Т. 4. — № 7. — P. 337—341.
  6. R. V. Pound, J. L. Snider. Effect of Gravity on Nuclear Resonance // Physical Review Letters. — 2 ноября 1964. — Т. 13. — № 18. — P. 539—540.
  7. I. I. Shapiro. Fourth test of general relativity // Physical Review Letters. — 28 декабря 1964. — Т. 13. — № 26. — P. 789—791.
  8. I. I. Shapiro, Gordon H. Pettengill, Michael E. Ash, Melvin L. Stone, William B. Smith, Richard P. Ingalls, Richard A. Brockelman. Fourth test of general relativity:preliminary results // Physical Review Letters. — 27 мая 1968. — Т. 20. — № 22. — P. 1265—1269. — DOI:10.1103/PhysRevLett.20.1265
  9. Albert Einstein. The Foundation of the General Theory of Relativity // Annalen der Physik. — 1916. (Русский перевод в сборнике: Альберт Эйнштейн и теория гравитации: Сборник статей / Под ред. Е. Куранского. — М.: Мир, 1979. — С. 146—196. — 592 с.).
  10. Hans C. Ohanian, Remo Ruffini. 4.3 // Gravitation and Spacetime. — 2nd ed. — W. W. Norton & Company, 1994. — P. 188—196. — ISBN 0-393-96501-5.
  11. Froeschlé M., Mignard F., Arenou F. Determination of the PPN Parameter gamma with the Hipparcos data, Proceedings of the ESA Symposium «Hipparcos - Venice 97», 13-16 May, Venice, Italy, ESA SP-402 (July 1997), p. 49-52.
  12. P. Schneider, J. Ehlers, E. E. Falco. Gravitational Lenses. — New York: Springer-Verlag, 1992.
  13. Сурдин В. Г. Гравитационная линза. Глоссарий Астронета. Проверено 18 декабря 2013. Архивировано из первоисточника 23 марта 2012.
  14. C. Alcock и др. The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations // Astrophys. — 2000. — № 542. — P. 281—307.
  15. Stephen Hawking. Particle creation by black holes // Communications in Mathematical Physics. — 1975. — Т. 43. — № 3. — P. 199—220.
  16. Информация о звёздах вблизи центра Галактики на сайте института Макса Планка
  17. См.: Физика за горизонтом событий, а также последний обзор по бозонным звёздам:
    Franz E. Schunck, Eckehard W. Mielke. General relativistic boson stars // Classical and Quantum Gravity. — 2003. — Т. 20. — № 20. — P. R301—R356.
  18. Роузвер Н. Т. Перигелий Меркурия от Леверье до Эйнштейна. — М.: Мир, 1985. — 244 с.
  19. Богородский А. Ф. Глава II // Всемирное тяготение. — Киев: Наукова думка, 1971. — 352 с.
  20. CM Will. Chapter 2 // General Relativity, an Einstein Century Survey / SW Hawking and W Israel, eds. — Cambridge: Cambridge University Press, 1979.
  21. Нобелевские лауреаты по физике за 1993 год
  22. Глава 2, раздел 7 // О некоторых важнейших представлениях макрофизики и физики Космоса
  23. Масевич А. Г., Тутуков А. В. Эволюция звёзд: теория и наблюдения. — М.: Наука, 1988. — 280 с. — ISBN 5-02-013861-4.
  24. См. пресс-релиз (англ.)
  25. 1 2 Physical Review Letters - Gravity Probe B: Final results of a space experiment to test general relativity (1 мая 2011). Проверено 6 мая 2011.
  26. Sexl R. U. Monopole gravitational radiation // Physics Lett.. — 1966. — Т. 20. — № 376. — DOI:10.1016/0031-9163(66)90748-7
  27. Уилл К. Теория и эксперимент в гравитационной физике / Пер. с англ. — М.: Энергоатомиздат, 1985. — С. 200. — 296 с.

Литература[править | править вики-текст]