Призма (геометрия)

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Призма (математика)»)
Перейти к: навигация, поиск
Призма

Призма (от др.-греч. πρίσμα (лат. prisma) «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Или (равносильно) — это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани — параллелограммы.

Призма является разновидностью цилиндра (в общем смысле).

Элементы призмы[править | править исходный текст]

Название Определение Обозначения на чертеже Чертеж
Основания Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных плоскостях. ABCDE, KLMNP
Призма
Боковые грани Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. ABLK, BCML, CDNM, DEPN, EAKP
Боковая поверхность Объединение боковых граней.
Полная поверхность Объединение оснований и боковой поверхности.
Боковые ребра Общие стороны боковых граней. AK, BL, CM, DN, EP
Высота Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям. KR
Диагональ


Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. BP
Диагональная плоскость Плоскость, проходящая через боковое ребро призмы и диагональ основания.
Диагональное сечение Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат. EBLP
Перпендикулярное (ортогональное) сечение Пересечение призмы и плоскости, перпендикулярной её боковому ребру.

Свойства призмы[править | править исходный текст]

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые ребра призмы параллельны и равны.
  • Объём призмы равен произведению её высоты на площадь основания:
V=S\cdot h
  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
  • Площадь боковой поверхности произвольной призмы S=P\cdot l, где P — периметр перпендикулярного сечения, l — длина бокового ребра.
  • Площадь боковой поверхности прямой призмы S=P\cdot h, где P — периметр основания призмы, h — высота призмы.
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням.

Виды призм[править | править исходный текст]

Призма, основанием которой является параллелограмм, называется параллелепипедом.
Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.
Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником.

См. также[править | править исходный текст]

Ссылки[править | править исходный текст]