Принцип Гюйгенса — Френеля

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Рефракция волн по Гюйгенсу: синие линии синяя стрелка — фронты исходной волны и направлени вектора фазовой сколости; желтые точки — вторичные источники; серые окружности — фронты сферических волн, порожденных вторичными источниками; зеленые линии и стрелка — новый фронт волны и новое направление вектора фазовой скорости
Дифракция волн по Гюйгенсу

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Описание[править | править исходный текст]

Принцип Гюйгенса является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта (поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.


Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

Литература[править | править исходный текст]

Ссылки[править | править исходный текст]