Принцип Ферма

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Принцип Ферма на примере эллиптических поверхностях
Объяснение закона Снелла при помощи принципа Ферма.

При́нцип Ферма́ (принцип наименьшего времени Ферма) в геометрической оптике — постулат, предписывающий лучу света двигаться из начальной точки в конечную точку по пути, минимизирующему (реже — максимизирующему) время движения (или, что то же самое, минимизирующему оптическую длину пути). В более точной формулировке[1]: свет выбирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения; другими словами, любое малое изменение этого пути не приводит в первом порядке к изменению времени прохождения.

Этот принцип, сформулированный в I в. Героном Александрийским для отражения света, в общем виде был сформулирован Пьером Ферма в 1662 году в качестве самого общего закона геометрической оптики. В разнообразных конкретных случаях из него следовали уже известные законы: прямолинейность луча света в однородной среде, законы отражения и преломления света на границе двух прозрачных сред.

Принцип Ферма представляет собой предельный случай принципа Гюйгенса-Френеля в волновой оптике для случая исчезающей малой длины волны света.

Принцип Ферма является одним из экстремальных принципов в физике.

Примечания[править | править исходный текст]

  1. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Том 3: Излучение. Волны. Кванты. Перевод с английского (издание 4). — Эдиториал УРСС. — ISBN 5-354-00701-1

Литература[править | править исходный текст]

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. — Мн.: Вышэйшая школа, 1979. — С. 364—365. — 416 с. — 30 000 экз.

Ссылки[править | править исходный текст]