Простые числа-близнецы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Простые числа-близнецы, или парные простые числа — пары простых чисел, отличающихся на 2.

Общая информация[править | править вики-текст]

Все пары простых-близнецов, кроме (3, 5), имеют вид 6n\pm 1, так как числа с другими вычетами по модулю 6 делятся на 2 или на 3. Если учитывать также делимость на 5, то окажется, что все пары близнецов, кроме первых двух, имеют вид (30n+11, 30n+13), (30n+17, 30n+19) или (30n+29, 30n+31).

Первые простые числа-близнецы:

  (3,  5),    (5,  7),    (11, 13),   (17, 19),   (29, 31),   (41, 43),   (59, 61), 
  (71,  73),  (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),
  (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),
  (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),
  (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Наибольшими известными простыми-близнецами являются числа 3756801695685 \cdot 2^{666669}\pm 1[1]. Они были найдены 24 декабря 2011 года в рамках проекта распределенных вычислений PrimeGrid[2].

Предполагается, что таких пар бесконечно много, но это не доказано. По гипотезе Харди — Литтлвуда, количество \pi_2(x) пар простых-близнецов, не превосходящих x, асимптотически приближается к

\pi_2(x) \sim 2 C_2 \int\limits_2^x \frac{dt}{(\ln t)^2},

где C_2 — константа простых-близнецов:

C_2 = \prod_{p\ge 3} \left(1-\frac{1}{(p-1)^2}\right) \approx 0.66016118158468695739278121100145\ldots

История[править | править вики-текст]

Вопрос о том, бесконечно ли много простых чисел-близнецов был одним из величайших открытых вопросов в теории чисел в течение многих лет. Гипотеза о бесконечном числе простых чисел близнецов утверждает: «Существует бесконечно много таких простых p, что и p + 2 — тоже простое». В 1849 году де Полиньяк выдвинул более общую гипотезу: «Для любого натурального k существует бесконечное число таких пар чисел p и p', что p-p' = 2k».

17 апреля 2013 года, Итан Чжан анонсировал доказательство того, что для некоторого целого N меньше 70 миллионов существует бесконечно много пар простых чисел, которые отличаются не более чем на N. Работа была принята в Анналы математики в мае 2013 года. Теренс Тао впоследствии предложил проекту Polymath совместными усилиями оптимизировать границу. По состоянию на апрель 2014 года оценка была снижена до 246.[3]. В предположении справедливости гипотезы Эллиота — Халберстама и её обобщения оценка была снижена до 12 и 6 соответственно.[4]

Теорема Бруна[править | править вики-текст]

Вигго Брун в 1919 доказал, что \pi_2(x) \ll \frac{x}{(\ln x)^2} и ряд обратных величин сходится

B_2=\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{5}+\frac{1}{7}\right)
+\left(\frac{1}{11}+\frac{1}{13}\right)+\left(\frac{1}{17}+\frac{1}{19}\right)+\ldots

Это означает, что если простых близнецов и бесконечно много, то они все же расположены в натуральном ряду довольно редко.

Значение B_2 \approx 1.902160583104 называется константой Бруна для простых-близнецов.

Впоследствии была доказана сходимость аналогичного ряда для обобщённых простых близнецов.

Списки[править | править вики-текст]

Самые большие известные простые близнецы

  • 3756801695685 \cdot 2^{666669}\pm 1 (200700 цифр)
  • 52464467530725 \cdot 2^{555500}\pm 1
  • 65516468355 \cdot 2^{333333}\pm 1 (100355 цифр)
  • 2003663613 \cdot 2^{195000}\pm 1 (58711 цифр)
  • 194772106074315 \cdot 2^{171960} \pm 1 (51780 цифр)
  • 100314512544015 \cdot 2^{171960} \pm 1 (51780 цифр)
  • 16869987339975 \cdot 2^{171960} \pm 1 (51779 цифр)

Простые числа-триплеты[править | править вики-текст]

Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются — (2, 3, 5) и (3, 5, 7). Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел (p, p+2, p+6) или (p, p+4, p+6) называется триплетом.

Первые простые числа-триплеты:

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41 , 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193 , 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), (821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 863), (877, 881, 883), (881, 883, 887)

На данный момент, наибольшими известными простыми-триплетами являются числа:

(p, p+2, p+6), где p = 2072644824759 × 233333 − 1 (10047 цифр, ноябрь, 2008, Norman Luhn, François Morain, FastECPP)

Квадруплеты простых чисел[править | править вики-текст]

Четвёрки простых чисел вида (p, p+2, p+6, p+8) или сдвоенные близнецы или квадруплеты:

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439), (13001, 13003, 13007, 13009), (15641, 15643, 15647, 15649), (15731, 15733, 15737, 15739), (16061, 16063, 16067, 16069), (18041, 18043, 18047, 18049), (18911, 18913, 18917, 18919), (19421, 19423, 19427, 19429), (21011, 21013, 21017, 21019), (22271, 22273, 22277, 22279), (25301, 25303, 25307, 25309),… — последовательность A007530 в OEIS.

По модулю 30 все квадруплеты, кроме первого, имеют вид (11, 13, 17, 19).

По модулю 210 все квадруплеты, кроме первого, имеют вид либо (11, 13, 17, 19), либо (101, 103, 107, 109), либо (191, 193, 197, 199).

Секступлеты простых чисел[править | править вики-текст]

Шестёрки простых чисел вида (p, p+4, p+6, p+10, p+12, p+16):

(7, 11, 13, 17, 19, 23), (97, 101, 103, 107, 109, 113), (16057, 16061, 16063, 16067, 16069, 16073), (19417, 19421, 19423, 19427, 19429, 19433), (43777, 43781, 43783, 43787, 43789, 43793) … — последовательность A022008 в OEIS.

По модулю 210 все секступлеты, кроме первого, имеют вид (97, 101, 103, 107, 109, 113).

См. также[править | править вики-текст]

Примечания[править | править вики-текст]